Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 499 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 499 }$: $ x^{2} + 493 x + 7 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 22 a + 40 + \left(438 a + 386\right)\cdot 499 + \left(151 a + 357\right)\cdot 499^{2} + \left(445 a + 202\right)\cdot 499^{3} + \left(269 a + 400\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 477 a + 172 + \left(60 a + 497\right)\cdot 499 + \left(347 a + 331\right)\cdot 499^{2} + \left(53 a + 227\right)\cdot 499^{3} + \left(229 a + 77\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 116 + 307\cdot 499 + 156\cdot 499^{2} + 237\cdot 499^{3} + 223\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 165 a + 449 + \left(240 a + 348\right)\cdot 499 + \left(343 a + 343\right)\cdot 499^{2} + \left(396 a + 347\right)\cdot 499^{3} + \left(39 a + 104\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 334 a + 441 + \left(258 a + 128\right)\cdot 499 + \left(155 a + 168\right)\cdot 499^{2} + \left(102 a + 388\right)\cdot 499^{3} + \left(459 a + 445\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 267 + 81\cdot 499 + 292\cdot 499^{2} + 471\cdot 499^{3} + 450\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 13 + 246\cdot 499 + 345\cdot 499^{2} + 120\cdot 499^{3} + 293\cdot 499^{4} +O\left(499^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $20$ |
| $21$ | $2$ | $(1,2)$ | $0$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $-4$ |
| $70$ | $3$ | $(1,2,3)$ | $2$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $2$ |
| $210$ | $4$ | $(1,2,3,4)$ | $0$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $2$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $-1$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $0$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.