Properties

Label 20.3e10_8388019e10.70.1
Dimension 20
Group $S_7$
Conductor $ 3^{10} \cdot 8388019^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$101813789582410492202670889888894537679492535376089111001941920265880371249= 3^{10} \cdot 8388019^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 9 x^{4} + 7 x^{3} - 10 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 45 + 24\cdot 73 + 24\cdot 73^{3} + 71\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 21 + \left(30 a + 7\right)\cdot 73 + \left(39 a + 18\right)\cdot 73^{2} + \left(21 a + 68\right)\cdot 73^{3} + \left(71 a + 6\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 3\cdot 73 + 10\cdot 73^{2} + 54\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 a + 2 + \left(42 a + 7\right)\cdot 73 + \left(33 a + 33\right)\cdot 73^{2} + \left(51 a + 20\right)\cdot 73^{3} + \left(a + 53\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 a + 45 + \left(10 a + 59\right)\cdot 73 + \left(41 a + 42\right)\cdot 73^{2} + \left(52 a + 7\right)\cdot 73^{3} + \left(41 a + 41\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 9 + \left(62 a + 31\right)\cdot 73 + \left(31 a + 9\right)\cdot 73^{2} + \left(20 a + 51\right)\cdot 73^{3} + \left(31 a + 40\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 19 + 13\cdot 73 + 32\cdot 73^{2} + 66\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $20$
$21$ $2$ $(1,2)$ $0$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $-4$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.