Properties

Label 20.3e10_251e10_69073e10.70.1c1
Dimension 20
Group $S_7$
Conductor $ 3^{10} \cdot 251^{10} \cdot 69073^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$144888177727408710869663479942909426502474178962199947314291070853637766460801= 3^{10} \cdot 251^{10} \cdot 69073^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 13 x^{4} - x^{3} - 13 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 239 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 239 }$: $ x^{2} + 237 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 6 + \left(145 a + 28\right)\cdot 239 + \left(209 a + 121\right)\cdot 239^{2} + \left(204 a + 32\right)\cdot 239^{3} + \left(233 a + 77\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 217 a + 199 + \left(92 a + 213\right)\cdot 239 + \left(144 a + 26\right)\cdot 239^{2} + \left(64 a + 112\right)\cdot 239^{3} + \left(60 a + 149\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 232 a + 20 + \left(93 a + 72\right)\cdot 239 + \left(29 a + 156\right)\cdot 239^{2} + \left(34 a + 232\right)\cdot 239^{3} + \left(5 a + 100\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 134 + 93\cdot 239 + 122\cdot 239^{2} + 117\cdot 239^{3} + 200\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 155 + \left(146 a + 182\right)\cdot 239 + \left(94 a + 222\right)\cdot 239^{2} + \left(174 a + 96\right)\cdot 239^{3} + \left(178 a + 205\right)\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 235\cdot 239 + 68\cdot 239^{2} + 41\cdot 239^{3} + 195\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 179 + 130\cdot 239 + 237\cdot 239^{2} + 83\cdot 239^{3} + 27\cdot 239^{4} +O\left(239^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$20$
$21$$2$$(1,2)$$0$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$-4$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.