Properties

Label 20.3689911e10.70.1
Dimension 20
Group $S_7$
Conductor $ 3689911^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$467906320599370227018526921673296427728524305431186323410254083601= 3689911^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - x^{5} + 4 x^{4} - 5 x^{3} + 4 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 251 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 251 }$: $ x^{2} + 242 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 30 + \left(86 a + 183\right)\cdot 251 + \left(118 a + 116\right)\cdot 251^{2} + \left(110 a + 229\right)\cdot 251^{3} + \left(7 a + 194\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 100 a + 165 + \left(78 a + 209\right)\cdot 251 + \left(138 a + 147\right)\cdot 251^{2} + \left(212 a + 47\right)\cdot 251^{3} + \left(56 a + 216\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 245 a + 84 + \left(164 a + 198\right)\cdot 251 + \left(132 a + 91\right)\cdot 251^{2} + \left(140 a + 101\right)\cdot 251^{3} + \left(243 a + 151\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 a + 83 + \left(160 a + 112\right)\cdot 251 + \left(97 a + 169\right)\cdot 251^{2} + \left(18 a + 126\right)\cdot 251^{3} + \left(176 a + 133\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 151 a + 61 + \left(172 a + 62\right)\cdot 251 + \left(112 a + 59\right)\cdot 251^{2} + \left(38 a + 65\right)\cdot 251^{3} + \left(194 a + 13\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 184 + 251 + 33\cdot 251^{2} + 239\cdot 251^{3} + 100\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 188 a + 148 + \left(90 a + 236\right)\cdot 251 + \left(153 a + 134\right)\cdot 251^{2} + \left(232 a + 194\right)\cdot 251^{3} + \left(74 a + 193\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $20$
$21$ $2$ $(1,2)$ $0$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $-4$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.