Properties

Label 20.29e10_43e10_241e10.70.1
Dimension 20
Group $S_7$
Conductor $ 29^{10} \cdot 43^{10} \cdot 241^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$6009453243974704947599620664727261140560621332429279649= 29^{10} \cdot 43^{10} \cdot 241^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} - 2 x^{3} + 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 60 a + 4 + \left(135 a + 54\right)\cdot 193 + \left(147 a + 108\right)\cdot 193^{2} + \left(3 a + 104\right)\cdot 193^{3} + \left(a + 164\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 133 a + 64 + \left(57 a + 129\right)\cdot 193 + \left(45 a + 120\right)\cdot 193^{2} + \left(189 a + 153\right)\cdot 193^{3} + \left(191 a + 161\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 167 a + 190 + \left(35 a + 118\right)\cdot 193 + \left(24 a + 111\right)\cdot 193^{2} + \left(113 a + 131\right)\cdot 193^{3} + \left(87 a + 34\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 154\cdot 193 + 18\cdot 193^{2} + 148\cdot 193^{3} + 158\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 164 + \left(157 a + 180\right)\cdot 193 + \left(168 a + 99\right)\cdot 193^{2} + \left(79 a + 27\right)\cdot 193^{3} + \left(105 a + 9\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 a + 18 + \left(175 a + 2\right)\cdot 193 + \left(46 a + 124\right)\cdot 193^{2} + \left(118 a + 67\right)\cdot 193^{3} + \left(169 a + 192\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 148 a + 63 + \left(17 a + 132\right)\cdot 193 + \left(146 a + 188\right)\cdot 193^{2} + \left(74 a + 138\right)\cdot 193^{3} + \left(23 a + 50\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $20$
$21$ $2$ $(1,2)$ $0$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $-4$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.