Properties

Label 20.29e10_379e10_449e10.70.1
Dimension 20
Group $S_7$
Conductor $ 29^{10} \cdot 379^{10} \cdot 449^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$8567132596962458836957991816850735558676036908545808087697459802401= 29^{10} \cdot 379^{10} \cdot 449^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 4 x^{3} + 3 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 52\cdot 61 + 44\cdot 61^{2} + 33\cdot 61^{3} + 16\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 a + 46 + \left(34 a + 48\right)\cdot 61 + \left(39 a + 17\right)\cdot 61^{2} + \left(28 a + 3\right)\cdot 61^{3} + \left(25 a + 51\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 44 + \left(23 a + 54\right)\cdot 61 + \left(a + 27\right)\cdot 61^{2} + \left(33 a + 57\right)\cdot 61^{3} + \left(40 a + 44\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 52 + \left(45 a + 8\right)\cdot 61 + \left(29 a + 9\right)\cdot 61^{2} + \left(53 a + 22\right)\cdot 61^{3} + \left(13 a + 35\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 45 + \left(26 a + 23\right)\cdot 61 + \left(21 a + 22\right)\cdot 61^{2} + \left(32 a + 53\right)\cdot 61^{3} + \left(35 a + 47\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 1 + \left(15 a + 44\right)\cdot 61 + \left(31 a + 54\right)\cdot 61^{2} + \left(7 a + 45\right)\cdot 61^{3} + \left(47 a + 56\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 a + 49 + \left(37 a + 11\right)\cdot 61 + \left(59 a + 6\right)\cdot 61^{2} + \left(27 a + 28\right)\cdot 61^{3} + \left(20 a + 52\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $20$
$21$ $2$ $(1,2)$ $0$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $-4$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.