Properties

Label 20.1104217e10.70.1
Dimension 20
Group $S_7$
Conductor $ 1104217^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$2694910152214540443776125731068766636863833027137753619574449= 1104217^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 6 x^{5} - 7 x^{4} + 4 x^{3} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 84 + 122\cdot 137 + 131\cdot 137^{2} + 74\cdot 137^{3} + 72\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 84\cdot 137 + 4\cdot 137^{2} + 117\cdot 137^{3} + 21\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 119 + 38\cdot 137 + 93\cdot 137^{2} + 31\cdot 137^{3} + 4\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 97\cdot 137 + 114\cdot 137^{2} + 26\cdot 137^{3} + 58\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 90 + 23\cdot 137 + 80\cdot 137^{2} + 60\cdot 137^{3} + 73\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 48 a + 82 + \left(107 a + 66\right)\cdot 137 + \left(117 a + 104\right)\cdot 137^{2} + \left(29 a + 87\right)\cdot 137^{3} + \left(17 a + 53\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 89 a + 96 + \left(29 a + 114\right)\cdot 137 + \left(19 a + 18\right)\cdot 137^{2} + \left(107 a + 12\right)\cdot 137^{3} + \left(119 a + 127\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $20$
$21$ $2$ $(1,2)$ $0$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $-4$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.