Properties

Label 20.1016777e10.70.1c1
Dimension 20
Group $S_7$
Conductor $ 1016777^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$1181019686624914604072840389543449689467538605658217200229649= 1016777^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 4 x^{4} + x^{3} - 3 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 57 + \left(42 a + 4\right)\cdot 107 + \left(6 a + 105\right)\cdot 107^{2} + \left(76 a + 29\right)\cdot 107^{3} + \left(40 a + 56\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 80 a + 58 + \left(64 a + 39\right)\cdot 107 + \left(100 a + 88\right)\cdot 107^{2} + \left(30 a + 6\right)\cdot 107^{3} + \left(66 a + 36\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 86 + 48\cdot 107 + 34\cdot 107^{3} + 47\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 102\cdot 107 + 87\cdot 107^{2} + 70\cdot 107^{3} + 75\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 + 87\cdot 107 + 92\cdot 107^{2} + 83\cdot 107^{3} + 93\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 90\cdot 107 + 76\cdot 107^{2} + 34\cdot 107^{3} + 60\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 27 + 55\cdot 107 + 83\cdot 107^{2} + 60\cdot 107^{3} + 58\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$20$
$21$$2$$(1,2)$$0$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$-4$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.