Properties

Label 2.980.6t3.d.a
Dimension $2$
Group $D_{6}$
Conductor $980$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 6.2.4802000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.20.2t1.a.a
Projective image: $S_3$
Projective stem field: 3.1.980.1

Defining polynomial

$f(x)$$=$\(x^{6} - 3 x^{5} + 8 x^{4} - 11 x^{3} + 18 x^{2} - 13 x + 1\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \(x^{2} + 7 x + 2\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 3 + 9\cdot 11 + \left(8 a + 8\right)\cdot 11^{2} + \left(5 a + 1\right)\cdot 11^{3} + \left(6 a + 3\right)\cdot 11^{4} + \left(4 a + 2\right)\cdot 11^{5} + \left(2 a + 5\right)\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 2 + 2\cdot 11 + 5\cdot 11^{2} + 11^{4} + 10\cdot 11^{5} + 3\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 8 + 3\cdot 11 + \left(8 a + 3\right)\cdot 11^{2} + \left(5 a + 5\right)\cdot 11^{3} + \left(6 a + 9\right)\cdot 11^{4} + \left(4 a + 7\right)\cdot 11^{5} + 2 a\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 8 a + 4 + \left(10 a + 7\right)\cdot 11 + \left(2 a + 7\right)\cdot 11^{2} + \left(5 a + 5\right)\cdot 11^{3} + \left(4 a + 1\right)\cdot 11^{4} + \left(6 a + 3\right)\cdot 11^{5} + \left(8 a + 10\right)\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 10 + 8\cdot 11 + 5\cdot 11^{2} + 10\cdot 11^{3} + 9\cdot 11^{4} + 7\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 8 a + 9 + \left(10 a + 1\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(5 a + 9\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} + \left(6 a + 8\right)\cdot 11^{5} + \left(8 a + 5\right)\cdot 11^{6} +O(11^{7})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(5,6)$
$(1,3,2,6,4,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)$$-2$
$3$$2$$(1,2)(5,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,2,4)(3,6,5)$$-1$
$2$$6$$(1,3,2,6,4,5)$$1$

The blue line marks the conjugacy class containing complex conjugation.