Properties

Label 2.975.6t5.c.b
Dimension $2$
Group $S_3\times C_3$
Conductor $975$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(975\)\(\medspace = 3 \cdot 5^{2} \cdot 13 \)
Artin stem field: Galois closure of 6.0.2851875.1
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.39.6t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.12675.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 4x^{4} + 2x^{3} - 2x^{2} - 2x + 13 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 16 + \left(9 a + 46\right)\cdot 47 + \left(41 a + 22\right)\cdot 47^{2} + \left(11 a + 35\right)\cdot 47^{3} + \left(45 a + 45\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 32 a + 42 + \left(26 a + 45\right)\cdot 47 + \left(43 a + 19\right)\cdot 47^{2} + \left(4 a + 2\right)\cdot 47^{3} + \left(6 a + 2\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 44 a + 22 + \left(37 a + 14\right)\cdot 47 + \left(5 a + 2\right)\cdot 47^{2} + \left(35 a + 18\right)\cdot 47^{3} + \left(a + 30\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 32 a + 41 + \left(21 a + 24\right)\cdot 47 + \left(14 a + 27\right)\cdot 47^{2} + \left(32 a + 9\right)\cdot 47^{3} + \left(8 a + 34\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 a + 11 + \left(25 a + 36\right)\cdot 47 + \left(32 a + 34\right)\cdot 47^{2} + \left(14 a + 12\right)\cdot 47^{3} + \left(38 a + 19\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 a + 12 + \left(20 a + 20\right)\cdot 47 + \left(3 a + 33\right)\cdot 47^{2} + \left(42 a + 15\right)\cdot 47^{3} + \left(40 a + 9\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4)$
$(1,2,4,3,6,5)$
$(1,6,4)(2,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$1$$3$$(1,4,6)(2,3,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,4)(2,5,3)$$2 \zeta_{3}$
$2$$3$$(1,6,4)$$\zeta_{3} + 1$
$2$$3$$(1,4,6)$$-\zeta_{3}$
$2$$3$$(1,4,6)(2,5,3)$$-1$
$3$$6$$(1,2,4,3,6,5)$$0$
$3$$6$$(1,5,6,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.