Properties

Label 2.93025.8t5.a.a
Dimension $2$
Group $Q_8$
Conductor $93025$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(93025\)\(\medspace = 5^{2} \cdot 61^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.0.805005849390625.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{61})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 3x^{7} + 57x^{6} + 135x^{5} + 306x^{4} + 5365x^{3} + 23383x^{2} + 40951x + 75421 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 106\cdot 199 + 78\cdot 199^{2} + 61\cdot 199^{3} + 63\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 + 25\cdot 199 + 148\cdot 199^{2} + 111\cdot 199^{3} + 58\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 + 179\cdot 199 + 8\cdot 199^{2} + 14\cdot 199^{3} + 187\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 30 + 41\cdot 199 + 63\cdot 199^{2} + 50\cdot 199^{3} + 23\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 79 + 131\cdot 199 + 171\cdot 199^{2} + 154\cdot 199^{3} + 177\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 118 + 37\cdot 199 + 58\cdot 199^{2} + 80\cdot 199^{3} + 74\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 157 + 72\cdot 199 + 156\cdot 199^{2} + 13\cdot 199^{3} + 121\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 195 + 3\cdot 199 + 111\cdot 199^{2} + 110\cdot 199^{3} + 90\cdot 199^{4} +O(199^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,4)(2,5,6,7)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,6,3,2)(4,7,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,8)(5,7)$$-2$
$2$$4$$(1,6,3,2)(4,7,8,5)$$0$
$2$$4$$(1,8,3,4)(2,5,6,7)$$0$
$2$$4$$(1,7,3,5)(2,8,6,4)$$0$