Basic invariants
| Dimension: | $2$ |
| Group: | $S_3$ |
| Conductor: | \(87\)\(\medspace = 3 \cdot 29 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 3.1.87.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_3$ |
| Parity: | odd |
| Projective image: | $S_3$ |
| Projective field: | Galois closure of 3.1.87.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 22 + 28\cdot 41 + 37\cdot 41^{2} + 2\cdot 41^{3} + 3\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 23 + 19\cdot 41 + 31\cdot 41^{2} + 37\cdot 41^{3} + 41^{4} +O(41^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 38 + 33\cdot 41 + 12\cdot 41^{2} + 36\cdot 41^{4} +O(41^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,2)$ | $0$ |
| $2$ | $3$ | $(1,2,3)$ | $-1$ |