Properties

Label 2.823.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 823 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$823 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 12 x^{7} - 27 x^{6} + 47 x^{5} - 67 x^{4} + 71 x^{3} - 59 x^{2} + 35 x - 25 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 16 a^{2} + 5 a + 11 + \left(6 a^{2} + 30 a + 4\right)\cdot 31 + \left(16 a^{2} + 25 a + 21\right)\cdot 31^{2} + \left(10 a^{2} + 27\right)\cdot 31^{3} + \left(2 a^{2} + 28 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a^{2} + 28 a + 30 + \left(8 a^{2} + 5\right)\cdot 31 + \left(15 a^{2} + 7 a + 10\right)\cdot 31^{2} + \left(21 a^{2} + 14 a + 14\right)\cdot 31^{3} + \left(23 a^{2} + 10 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 7 a + 5 + \left(7 a^{2} + 9 a + 15\right)\cdot 31 + \left(8 a^{2} + 11 a + 5\right)\cdot 31^{2} + 16 a\cdot 31^{3} + \left(12 a^{2} + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 19 a + 16 + \left(17 a^{2} + 22 a + 11\right)\cdot 31 + \left(6 a^{2} + 24 a + 4\right)\cdot 31^{2} + \left(20 a^{2} + 13 a + 3\right)\cdot 31^{3} + \left(16 a^{2} + 2 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 21 + \left(3 a^{2} + 12 a + 22\right)\cdot 31 + \left(14 a^{2} + 28 a + 19\right)\cdot 31^{2} + \left(26 a^{2} + 18 a + 17\right)\cdot 31^{3} + \left(26 a^{2} + 9 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a^{2} + 13 a + 20 + \left(20 a^{2} + 9 a + 13\right)\cdot 31 + \left(11 a^{2} + 21 a + 28\right)\cdot 31^{2} + \left(23 a^{2} + 11 a + 25\right)\cdot 31^{3} + \left(10 a^{2} + 15 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 19 a^{2} + 21 a + 13 + \left(a^{2} + 20 a + 11\right)\cdot 31 + \left(4 a^{2} + 2 a + 23\right)\cdot 31^{2} + \left(17 a^{2} + 5 a + 21\right)\cdot 31^{3} + \left(27 a^{2} + 5 a + 28\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 17 a^{2} + 22 a + 22 + \left(19 a^{2} + 15 a + 2\right)\cdot 31 + \left(19 a^{2} + 28 a + 13\right)\cdot 31^{2} + \left(6 a^{2} + 26 a + 4\right)\cdot 31^{3} + \left(26 a^{2} + 9 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 14 a^{2} + 24 a + 20 + \left(8 a^{2} + 2 a + 5\right)\cdot 31 + \left(28 a^{2} + 5 a + 29\right)\cdot 31^{2} + \left(28 a^{2} + 16 a + 8\right)\cdot 31^{3} + \left(8 a^{2} + 11 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(2,8)(5,7)(6,9)$
$(1,5,2,4,8,7,3,9,6)$
$(1,4,3)(2,7,6)(5,8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,3)(2,8)(5,7)(6,9)$ $0$ $0$ $0$
$2$ $3$ $(1,4,3)(2,7,6)(5,8,9)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,5,2,4,8,7,3,9,6)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,2,8,3,6,5,4,7,9)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,8,6,4,9,2,3,5,7)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.