Properties

Label 2.819.4t3.a
Dimension $2$
Group $D_{4}$
Conductor $819$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(819\)\(\medspace = 3^{2} \cdot 7 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.2457.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: C_2^2
Projective field: \(\Q(\sqrt{-3}, \sqrt{-91})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 9 + 13\cdot 31 + 19\cdot 31^{2} + 13\cdot 31^{3} + 30\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 27 + 31 + 9\cdot 31^{2} + 17\cdot 31^{3} + 8\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 28 + 5\cdot 31^{2} + 26\cdot 31^{3} + 18\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 30 + 14\cdot 31 + 28\cdot 31^{2} + 4\cdot 31^{3} + 4\cdot 31^{4} +O(31^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.