Basic invariants
| Dimension: | $2$ |
| Group: | $D_{4}$ |
| Conductor: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 4.0.320.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | odd |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(i, \sqrt{5})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 3 + 22\cdot 29 + 9\cdot 29^{2} + 12\cdot 29^{3} + 15\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 5 + 8\cdot 29 + 12\cdot 29^{2} + 7\cdot 29^{3} + 9\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 8 + 22\cdot 29 + 28\cdot 29^{2} + 22\cdot 29^{3} + 8\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 15 + 5\cdot 29 + 7\cdot 29^{2} + 15\cdot 29^{3} + 24\cdot 29^{4} +O(29^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |