Properties

Label 2.7e2_73e2.24t7.3
Dimension 2
Group $\SL(2,3)$
Conductor $ 7^{2} \cdot 73^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$261121= 7^{2} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 8 x^{6} + 8 x^{5} + 32 x^{4} + 66 x^{3} + 128 x^{2} + 204 x + 179 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T7
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 22\cdot 37 + 24\cdot 37^{2} + 26\cdot 37^{3} + 31\cdot 37^{4} + 25\cdot 37^{5} + 20\cdot 37^{6} + 15\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 25 a^{2} + 31 a + 27 + \left(6 a^{2} + 16 a + 11\right)\cdot 37 + \left(33 a^{2} + 5 a + 23\right)\cdot 37^{2} + \left(13 a^{2} + 33 a + 11\right)\cdot 37^{3} + \left(35 a^{2} + 7 a + 20\right)\cdot 37^{4} + \left(19 a^{2} + 32 a + 16\right)\cdot 37^{5} + \left(24 a^{2} + 20 a + 28\right)\cdot 37^{6} + \left(14 a + 5\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 26 + 12\cdot 37 + 20\cdot 37^{2} + 17\cdot 37^{3} + 23\cdot 37^{4} + 36\cdot 37^{5} + 25\cdot 37^{6} + 31\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 18 a^{2} + 11 a + 8 + \left(a^{2} + 10 a + 9\right)\cdot 37 + \left(8 a^{2} + 26 a + 3\right)\cdot 37^{2} + \left(28 a^{2} + 11 a + 31\right)\cdot 37^{3} + \left(12 a^{2} + 28 a + 5\right)\cdot 37^{4} + \left(33 a^{2} + 18 a + 3\right)\cdot 37^{5} + \left(27 a^{2} + 18 a + 30\right)\cdot 37^{6} + \left(a^{2} + 24 a + 12\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 7 a + 25 + \left(34 a^{2} + 32 a + 10\right)\cdot 37 + \left(21 a^{2} + 3 a + 15\right)\cdot 37^{2} + \left(4 a^{2} + 29 a + 11\right)\cdot 37^{3} + \left(20 a^{2} + 25 a + 33\right)\cdot 37^{4} + \left(3 a^{2} + 4 a + 24\right)\cdot 37^{5} + \left(10 a^{2} + 3 a + 7\right)\cdot 37^{6} + \left(10 a^{2} + 26 a + 7\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 14 a^{2} + 29 + \left(30 a^{2} + 22 a + 13\right)\cdot 37 + \left(14 a^{2} + 2 a + 30\right)\cdot 37^{2} + \left(35 a^{2} + 18 a + 22\right)\cdot 37^{3} + \left(8 a^{2} + 31 a + 27\right)\cdot 37^{4} + \left(14 a^{2} + 34 a\right)\cdot 37^{5} + \left(3 a^{2} + 4 a + 6\right)\cdot 37^{6} + \left(11 a^{2} + 34 a + 13\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 26 a + 30 + \left(5 a^{2} + 4 a + 23\right)\cdot 37 + \left(14 a^{2} + 8 a + 27\right)\cdot 37^{2} + \left(10 a^{2} + 7 a + 33\right)\cdot 37^{3} + \left(15 a^{2} + 14 a + 15\right)\cdot 37^{4} + \left(26 a^{2} + 20 a + 12\right)\cdot 37^{5} + \left(5 a^{2} + 13 a + 15\right)\cdot 37^{6} + \left(24 a^{2} + 15 a + 28\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 36 a + 25 + \left(33 a^{2} + 24 a + 6\right)\cdot 37 + \left(18 a^{2} + 27 a + 3\right)\cdot 37^{2} + \left(18 a^{2} + 11 a + 30\right)\cdot 37^{3} + \left(18 a^{2} + 3 a + 26\right)\cdot 37^{4} + \left(13 a^{2} + 27\right)\cdot 37^{5} + \left(2 a^{2} + 13 a + 13\right)\cdot 37^{6} + \left(26 a^{2} + 33 a + 33\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5,8)(4,6,7)$
$(1,7,3,5)(2,4,6,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,4,3,8)(2,5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,8)(5,7)$ $-2$
$4$ $3$ $(1,4,2)(3,8,6)$ $-1$
$4$ $3$ $(1,2,4)(3,6,8)$ $-1$
$6$ $4$ $(1,4,3,8)(2,5,6,7)$ $0$
$4$ $6$ $(1,6,4,3,2,8)(5,7)$ $1$
$4$ $6$ $(1,8,2,3,4,6)(5,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.