Properties

Label 2.7e2_73.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 7^{2} \cdot 73 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$3577= 7^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 26 x^{6} + 25 x^{5} + 160 x^{4} + 60 x^{3} - 145 x^{2} - 107 x - 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.73.3t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 4\cdot 13 + 2\cdot 13^{3} + 3\cdot 13^{4} + 4\cdot 13^{5} + 7\cdot 13^{6} + 13^{7} + 7\cdot 13^{8} + 4\cdot 13^{9} + 3\cdot 13^{10} +O\left(13^{ 12 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 8 a + 4 + \left(9 a^{2} + 6 a\right)\cdot 13 + \left(4 a^{2} + 11\right)\cdot 13^{2} + \left(5 a^{2} + 9 a + 12\right)\cdot 13^{3} + \left(12 a + 3\right)\cdot 13^{4} + \left(11 a^{2} + 11 a + 11\right)\cdot 13^{5} + \left(9 a + 3\right)\cdot 13^{6} + \left(11 a^{2} + a + 8\right)\cdot 13^{7} + \left(4 a^{2} + 8 a + 9\right)\cdot 13^{8} + \left(7 a^{2} + 4 a + 5\right)\cdot 13^{9} + \left(6 a^{2} + 2 a + 4\right)\cdot 13^{10} + \left(9 a + 7\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 3 + 12\cdot 13 + 7\cdot 13^{2} + 8\cdot 13^{3} + 2\cdot 13^{4} + 3\cdot 13^{5} + 9\cdot 13^{6} + 7\cdot 13^{7} + 7\cdot 13^{8} + 9\cdot 13^{9} + 7\cdot 13^{10} + 8\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 8 a + 6 + \left(3 a^{2} + a + 11\right)\cdot 13 + \left(9 a^{2} + 4\right)\cdot 13^{2} + \left(10 a^{2} + 4 a + 9\right)\cdot 13^{3} + \left(2 a + 8\right)\cdot 13^{4} + \left(9 a^{2} + 9 a + 8\right)\cdot 13^{5} + \left(10 a^{2} + a + 1\right)\cdot 13^{6} + \left(10 a^{2} + 8 a + 9\right)\cdot 13^{7} + \left(2 a^{2} + a + 8\right)\cdot 13^{8} + \left(a^{2} + 9\right)\cdot 13^{9} + \left(a^{2} + 2 a + 10\right)\cdot 13^{10} + \left(8 a^{2} + 12 a + 9\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 3 a + 2 + \left(6 a^{2} + 6 a + 1\right)\cdot 13 + \left(6 a^{2} + 6 a + 9\right)\cdot 13^{2} + \left(4 a^{2} + 5 a + 11\right)\cdot 13^{3} + \left(a^{2} + 6 a\right)\cdot 13^{4} + \left(9 a^{2} + 6 a\right)\cdot 13^{5} + \left(7 a^{2} + 4 a\right)\cdot 13^{6} + \left(12 a^{2} + 10 a + 6\right)\cdot 13^{7} + \left(4 a^{2} + 5\right)\cdot 13^{8} + \left(a^{2} + 12 a + 6\right)\cdot 13^{9} + \left(3 a^{2} + 8\right)\cdot 13^{10} + \left(a^{2} + 5 a + 12\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 6 a^{2} + 2 a + 2 + \left(10 a^{2} + 2\right)\cdot 13 + \left(a^{2} + 6 a + 7\right)\cdot 13^{2} + \left(3 a^{2} + 11 a + 5\right)\cdot 13^{3} + \left(11 a^{2} + 6 a + 5\right)\cdot 13^{4} + \left(5 a^{2} + 7 a + 4\right)\cdot 13^{5} + \left(4 a^{2} + 11 a + 4\right)\cdot 13^{6} + \left(2 a^{2} + 5\right)\cdot 13^{7} + \left(3 a^{2} + 4 a + 7\right)\cdot 13^{8} + \left(4 a^{2} + 9 a + 1\right)\cdot 13^{9} + \left(3 a^{2} + 9 a\right)\cdot 13^{10} + \left(11 a^{2} + 11 a\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 11 a + 11 + \left(2 a^{2} + 7 a\right)\cdot 13 + \left(4 a + 10\right)\cdot 13^{2} + \left(4 a^{2} + 3 a + 4\right)\cdot 13^{3} + \left(4 a^{2} + 8 a\right)\cdot 13^{4} + \left(5 a^{2} + 7 a + 8\right)\cdot 13^{5} + \left(2 a^{2} + 4 a + 3\right)\cdot 13^{6} + \left(8 a^{2} + a + 1\right)\cdot 13^{7} + \left(8 a^{2} + 9 a + 12\right)\cdot 13^{8} + \left(5 a^{2} + 3 a + 6\right)\cdot 13^{9} + \left(10 a^{2} + 7 a + 1\right)\cdot 13^{10} + \left(4 a^{2} + 9 a + 1\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 12 a^{2} + 7 a + \left(6 a^{2} + 3 a + 7\right)\cdot 13 + \left(3 a^{2} + 8 a + 1\right)\cdot 13^{2} + \left(11 a^{2} + 5 a + 10\right)\cdot 13^{3} + \left(7 a^{2} + 2 a\right)\cdot 13^{4} + \left(11 a^{2} + 9 a + 12\right)\cdot 13^{5} + \left(12 a^{2} + 6 a + 8\right)\cdot 13^{6} + \left(6 a^{2} + 3 a + 12\right)\cdot 13^{7} + \left(a^{2} + 2 a + 6\right)\cdot 13^{8} + \left(6 a^{2} + 9 a + 7\right)\cdot 13^{9} + \left(a^{2} + 3 a + 2\right)\cdot 13^{10} + \left(4 a + 12\right)\cdot 13^{11} +O\left(13^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,6)(2,8,4,5)$
$(2,5,6)(4,8,7)$
$(1,8,3,5)(2,6,4,7)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)(5,8)(6,7)$$-2$
$4$$3$$(1,4,6)(2,7,3)$$-\zeta_{3}$
$4$$3$$(1,6,4)(2,3,7)$$\zeta_{3} + 1$
$6$$4$$(1,7,3,6)(2,8,4,5)$$0$
$4$$6$$(1,3)(2,8,6,4,5,7)$$\zeta_{3}$
$4$$6$$(1,3)(2,7,5,4,6,8)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.