Properties

Label 2.7e2_31.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 7^{2} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1519= 7^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 4 x^{7} + x^{6} + 14 x^{5} + 19 x^{4} - x^{3} - 41 x^{2} - 59 x - 27 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 40 a^{2} + 25 a + 28 + \left(27 a^{2} + 28 a + 7\right)\cdot 47 + \left(6 a^{2} + 8 a + 26\right)\cdot 47^{2} + \left(16 a^{2} + 10 a + 18\right)\cdot 47^{3} + \left(22 a^{2} + 41 a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 36 a + 17 + \left(12 a^{2} + 22 a + 23\right)\cdot 47 + \left(20 a^{2} + 4 a + 6\right)\cdot 47^{2} + \left(11 a^{2} + 30 a + 9\right)\cdot 47^{3} + \left(11 a^{2} + 30 a + 11\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a^{2} + 4 a + 40 + \left(10 a^{2} + 42 a + 29\right)\cdot 47 + \left(18 a^{2} + 19 a + 10\right)\cdot 47^{2} + \left(32 a^{2} + 21 a + 36\right)\cdot 47^{3} + \left(46 a + 32\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a^{2} + 39 a + 27 + \left(43 a^{2} + 19 a + 2\right)\cdot 47 + \left(7 a^{2} + 46 a + 37\right)\cdot 47^{2} + \left(42 a^{2} + 29 a + 8\right)\cdot 47^{3} + \left(16 a^{2} + 11 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 a^{2} + 33 a + 34 + \left(6 a^{2} + 42 a + 12\right)\cdot 47 + \left(20 a^{2} + 33 a + 6\right)\cdot 47^{2} + \left(19 a^{2} + 6 a + 25\right)\cdot 47^{3} + \left(13 a^{2} + 22 a + 15\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a^{2} + 34 a + 36 + \left(25 a + 8\right)\cdot 47 + \left(7 a^{2} + 20 a + 11\right)\cdot 47^{2} + \left(6 a^{2} + 29 a + 23\right)\cdot 47^{3} + \left(14 a^{2} + 9 a + 39\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 24 a^{2} + 4 a + 35 + \left(40 a^{2} + 32 a + 43\right)\cdot 47 + \left(20 a^{2} + 27 a + 15\right)\cdot 47^{2} + \left(19 a^{2} + 42 a + 10\right)\cdot 47^{3} + \left(29 a^{2} + 35 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 11 a^{2} + 19 a + 25 + \left(16 a^{2} + 5 a + 39\right)\cdot 47 + \left(14 a^{2} + 12 a + 25\right)\cdot 47^{2} + \left(24 a^{2} + 29 a + 12\right)\cdot 47^{3} + \left(42 a + 12\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 43 a^{2} + 41 a + 42 + \left(29 a^{2} + 15 a + 19\right)\cdot 47 + \left(25 a^{2} + 14 a + 1\right)\cdot 47^{2} + \left(16 a^{2} + 35 a + 44\right)\cdot 47^{3} + \left(32 a^{2} + 41 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2)(3,9)(4,6)(7,8)$
$(1,2,5)(3,4,7)(6,9,8)$
$(1,8,7,2,6,3,5,9,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,2)(3,9)(4,6)(7,8)$ $0$ $0$ $0$
$2$ $3$ $(1,2,5)(3,4,7)(6,9,8)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,8,7,2,6,3,5,9,4)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,7,6,5,4,8,2,3,9)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,6,4,2,9,7,5,8,3)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.