Properties

Label 2.7e2_31.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7^{2} \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1519= 7^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{9} + 5 x^{7} - 4 x^{6} + 6 x^{5} - 4 x^{4} - 10 x^{3} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 18 + \left(16 a^{2} + 5 a + 14\right)\cdot 19 + \left(9 a^{2} + 13 a + 1\right)\cdot 19^{2} + \left(15 a^{2} + 8 a + 13\right)\cdot 19^{3} + \left(9 a^{2} + 13 a + 18\right)\cdot 19^{4} + \left(5 a^{2} + 17 a + 13\right)\cdot 19^{5} + \left(12 a^{2} + 12 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 14 a + 11 + \left(17 a^{2} + 10 a + 3\right)\cdot 19 + \left(8 a^{2} + 3 a + 6\right)\cdot 19^{2} + \left(5 a^{2} + 2 a + 13\right)\cdot 19^{3} + \left(9 a^{2} + a + 17\right)\cdot 19^{4} + \left(18 a^{2} + 6 a + 10\right)\cdot 19^{5} + \left(2 a^{2} + 4 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 14 a^{2} + 9 a + 5 + \left(5 a^{2} + 11 a + 18\right)\cdot 19 + \left(a^{2} + 5 a + 16\right)\cdot 19^{2} + \left(10 a^{2} + 16 a + 4\right)\cdot 19^{3} + \left(a^{2} + 11 a + 9\right)\cdot 19^{4} + \left(9 a^{2} + 6 a + 4\right)\cdot 19^{5} + \left(11 a^{2} + 2 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 17 a^{2} + 10 a + 13 + \left(15 a^{2} + 2 a + 13\right)\cdot 19 + \left(7 a^{2} + 2\right)\cdot 19^{2} + \left(12 a^{2} + 13 a + 11\right)\cdot 19^{3} + \left(7 a^{2} + 12 a + 6\right)\cdot 19^{4} + \left(4 a^{2} + 13 a + 17\right)\cdot 19^{5} + \left(14 a^{2} + 3 a + 10\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 15 a^{2} + 9 a + 16 + \left(16 a^{2} + 2 a + 7\right)\cdot 19 + \left(13 a^{2} + 5 a + 9\right)\cdot 19^{2} + \left(16 a^{2} + 3 a + 4\right)\cdot 19^{3} + \left(a^{2} + 2 a + 13\right)\cdot 19^{4} + \left(17 a^{2} + 17 a + 8\right)\cdot 19^{5} + \left(7 a^{2} + 15 a + 12\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 15 a + 12 + \left(16 a^{2} + 10 a + 12\right)\cdot 19 + \left(2 a^{2} + 17 a + 11\right)\cdot 19^{2} + \left(a^{2} + 11 a + 13\right)\cdot 19^{3} + \left(15 a^{2} + 11 a + 16\right)\cdot 19^{4} + \left(5 a^{2} + 2 a + 3\right)\cdot 19^{5} + \left(9 a^{2} + 11 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 14 a + 14 + \left(5 a^{2} + 5 a + 1\right)\cdot 19 + \left(2 a^{2} + 15 a + 10\right)\cdot 19^{2} + \left(a^{2} + 3 a + 13\right)\cdot 19^{3} + \left(2 a^{2} + 5 a + 13\right)\cdot 19^{4} + \left(15 a^{2} + 18 a + 9\right)\cdot 19^{5} + \left(a^{2} + 10 a + 2\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + a + 17 + \left(15 a^{2} + 5 a + 11\right)\cdot 19 + \left(3 a^{2} + 8 a + 11\right)\cdot 19^{2} + \left(11 a^{2} + 18 a + 9\right)\cdot 19^{3} + \left(15 a^{2} + 4 a + 15\right)\cdot 19^{4} + \left(11 a^{2} + 14 a + 5\right)\cdot 19^{5} + \left(18 a^{2} + 9\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 8 a^{2} + 4 a + 8 + \left(5 a^{2} + 3 a + 10\right)\cdot 19 + \left(6 a^{2} + 7 a + 5\right)\cdot 19^{2} + \left(2 a^{2} + 17 a + 11\right)\cdot 19^{3} + \left(13 a^{2} + 12 a + 2\right)\cdot 19^{4} + \left(7 a^{2} + 17 a + 1\right)\cdot 19^{5} + \left(16 a^{2} + 13 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,4)(3,5)(6,9)$
$(1,9)(4,7)(5,8)$
$(1,2,5)(3,9,7)(4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,9)(4,7)(5,8)$ $0$ $0$
$1$ $3$ $(1,8,7)(2,6,3)(4,9,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,7,8)(2,3,6)(4,5,9)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,2,5)(3,9,7)(4,8,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,5,2)(3,7,9)(4,6,8)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,6,9)(2,4,7)(3,5,8)$ $-1$ $-1$
$3$ $6$ $(1,7,8)(2,5,6,4,3,9)$ $0$ $0$
$3$ $6$ $(1,8,7)(2,9,3,4,6,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.