Properties

Label 2.7e2_31.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 7^{2} \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1519= 7^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} + 12 x^{3} - 12 x^{2} + 32 x - 153 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 6\cdot 13 + 2\cdot 13^{2} + 9\cdot 13^{3} + 7\cdot 13^{4} + 4\cdot 13^{5} + 9\cdot 13^{6} + 12\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 + 11\cdot 13 + 10\cdot 13^{2} + 9\cdot 13^{3} + 10\cdot 13^{4} + 7\cdot 13^{5} + 3\cdot 13^{6} + 10\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 11 + 9 a\cdot 13 + \left(11 a + 4\right)\cdot 13^{2} + \left(3 a + 12\right)\cdot 13^{3} + \left(3 a + 2\right)\cdot 13^{4} + \left(4 a + 10\right)\cdot 13^{5} + 3\cdot 13^{6} + \left(4 a + 11\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 5 + \left(5 a + 12\right)\cdot 13 + \left(a + 2\right)\cdot 13^{2} + \left(11 a + 3\right)\cdot 13^{3} + \left(11 a + 7\right)\cdot 13^{4} + \left(7 a + 4\right)\cdot 13^{5} + \left(4 a + 6\right)\cdot 13^{6} + \left(12 a + 10\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 2 + \left(3 a + 6\right)\cdot 13 + \left(a + 6\right)\cdot 13^{2} + \left(9 a + 4\right)\cdot 13^{3} + \left(9 a + 2\right)\cdot 13^{4} + \left(8 a + 11\right)\cdot 13^{5} + \left(12 a + 12\right)\cdot 13^{6} + \left(8 a + 1\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 7 + \left(7 a + 2\right)\cdot 13 + \left(11 a + 12\right)\cdot 13^{2} + \left(a + 12\right)\cdot 13^{3} + \left(a + 7\right)\cdot 13^{4} + 5 a\cdot 13^{5} + \left(8 a + 3\right)\cdot 13^{6} + 5\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,2)(3,6)(4,5)$
$(1,3)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,5)$$-2$
$3$$2$$(1,3)(2,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,5,3)(2,4,6)$$-1$
$2$$6$$(1,4,3,2,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.