Properties

Label 2.7e2_23.6t5.2c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7^{2} \cdot 23 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1127= 7^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 2 x^{7} + 5 x^{6} + 9 x^{5} - 5 x^{4} - 11 x^{3} + 6 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_23.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 6 a^{2} + 24 a + 2 + \left(26 a^{2} + 16 a\right)\cdot 29 + \left(11 a^{2} + 12 a + 16\right)\cdot 29^{2} + \left(14 a^{2} + 28 a + 14\right)\cdot 29^{3} + \left(17 a^{2} + 4 a + 24\right)\cdot 29^{4} + \left(12 a^{2} + 28 a + 7\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + 19 a + 4 + \left(20 a^{2} + 21 a + 28\right)\cdot 29 + \left(4 a^{2} + 21 a\right)\cdot 29^{2} + \left(17 a^{2} + 28 a + 23\right)\cdot 29^{3} + \left(7 a^{2} + 6 a + 28\right)\cdot 29^{4} + \left(14 a^{2} + 23 a + 20\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 11 a + 16 + \left(17 a^{2} + 25 a + 26\right)\cdot 29 + \left(17 a^{2} + 13\right)\cdot 29^{2} + \left(7 a^{2} + 5 a + 5\right)\cdot 29^{3} + \left(9 a^{2} + 18 a + 23\right)\cdot 29^{4} + \left(23 a^{2} + a + 2\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 22 a + 3 + \left(4 a^{2} + a + 16\right)\cdot 29 + \left(10 a^{2} + 7 a + 27\right)\cdot 29^{2} + \left(20 a^{2} + 24 a + 7\right)\cdot 29^{3} + \left(2 a^{2} + 16 a + 22\right)\cdot 29^{4} + \left(21 a^{2} + 14 a + 10\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 a^{2} + 28 a + 23 + \left(6 a^{2} + 6 a + 13\right)\cdot 29 + \left(13 a^{2} + 23 a + 3\right)\cdot 29^{2} + \left(12 a^{2} + a + 21\right)\cdot 29^{3} + \left(24 a^{2} + 9 a + 12\right)\cdot 29^{4} + \left(24 a^{2} + 24 a + 1\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 a^{2} + 23 a + 22 + \left(14 a^{2} + 15 a + 13\right)\cdot 29 + \left(28 a^{2} + 15 a + 28\right)\cdot 29^{2} + \left(6 a^{2} + 24 a + 23\right)\cdot 29^{3} + \left(2 a^{2} + 5 a + 13\right)\cdot 29^{4} + \left(22 a^{2} + 28 a + 20\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 13 a^{2} + 17 a + 15 + \left(4 a^{2} + 5 a + 16\right)\cdot 29 + \left(14 a^{2} + 13\right)\cdot 29^{2} + \left(20 a^{2} + 5 a + 27\right)\cdot 29^{3} + \left(18 a^{2} + 5 a + 4\right)\cdot 29^{4} + \left(22 a^{2} + 20 a + 3\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 4 a + 10 + \left(24 a + 24\right)\cdot 29 + \left(9 a^{2} + 22 a + 26\right)\cdot 29^{2} + 26 a^{2}29^{3} + \left(15 a^{2} + a + 11\right)\cdot 29^{4} + \left(24 a^{2} + 27 a + 20\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{2} + 26 a + 22 + \left(22 a^{2} + 26 a + 5\right)\cdot 29 + \left(6 a^{2} + 11 a + 14\right)\cdot 29^{2} + \left(19 a^{2} + 26 a + 20\right)\cdot 29^{3} + \left(17 a^{2} + 18 a + 3\right)\cdot 29^{4} + \left(8 a^{2} + 6 a + 28\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,6)(4,7)(5,9)$
$(1,6)(2,7)(5,8)$
$(1,8,2)(3,9,4)(5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,7)(5,8)$$0$
$1$$3$$(1,8,2)(3,9,4)(5,7,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,8)(3,4,9)(5,6,7)$$2 \zeta_{3}$
$2$$3$$(1,3,6)(2,4,7)(5,8,9)$$-1$
$2$$3$$(1,9,7)(2,3,5)(4,6,8)$$\zeta_{3} + 1$
$2$$3$$(1,7,9)(2,5,3)(4,8,6)$$-\zeta_{3}$
$3$$6$$(1,5,2,6,8,7)(3,9,4)$$0$
$3$$6$$(1,7,8,6,2,5)(3,4,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.