Properties

Label 2.7e2_23.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 7^{2} \cdot 23 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1127= 7^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + x^{4} - 4 x^{3} + 11 x^{2} + 22 x + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 34 + \left(12 a + 34\right)\cdot 43 + \left(16 a + 4\right)\cdot 43^{2} + \left(29 a + 4\right)\cdot 43^{3} + \left(13 a + 12\right)\cdot 43^{4} + \left(40 a + 38\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 31 + \left(41 a + 27\right)\cdot 43 + \left(11 a + 31\right)\cdot 43^{2} + \left(40 a + 40\right)\cdot 43^{3} + \left(22 a + 35\right)\cdot 43^{4} + \left(7 a + 35\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 28 + 23 a\cdot 43 + \left(17 a + 1\right)\cdot 43^{2} + \left(17 a + 42\right)\cdot 43^{3} + \left(32 a + 3\right)\cdot 43^{4} + \left(3 a + 42\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 19 + \left(19 a + 33\right)\cdot 43 + \left(25 a + 37\right)\cdot 43^{2} + \left(25 a + 41\right)\cdot 43^{3} + \left(10 a + 18\right)\cdot 43^{4} + \left(39 a + 13\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 37 + \left(a + 19\right)\cdot 43 + \left(31 a + 2\right)\cdot 43^{2} + \left(2 a + 26\right)\cdot 43^{3} + \left(20 a + 18\right)\cdot 43^{4} + \left(35 a + 20\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 26 + \left(30 a + 12\right)\cdot 43 + \left(26 a + 8\right)\cdot 43^{2} + \left(13 a + 17\right)\cdot 43^{3} + \left(29 a + 39\right)\cdot 43^{4} + \left(2 a + 21\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,6,2,5,4,3)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,5)(2,3)(4,6)$ $0$ $0$
$1$ $3$ $(1,2,4)(3,6,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,4,2)(3,5,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,4,2)(3,6,5)$ $-1$ $-1$
$2$ $3$ $(1,2,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,4,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,6,2,5,4,3)$ $0$ $0$
$3$ $6$ $(1,3,4,5,2,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.