Properties

Label 2.7e2_19e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 7^{2} \cdot 19^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$17689= 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 11 x^{3} + 75 x^{2} + 90 x + 349 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 28 + \left(17 a + 4\right)\cdot 31 + 22 a\cdot 31^{2} + \left(14 a + 30\right)\cdot 31^{3} + \left(3 a + 9\right)\cdot 31^{4} + \left(22 a + 8\right)\cdot 31^{5} + \left(5 a + 18\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 13 + \left(4 a + 17\right)\cdot 31 + \left(25 a + 9\right)\cdot 31^{2} + \left(10 a + 14\right)\cdot 31^{3} + \left(23 a + 3\right)\cdot 31^{4} + \left(30 a + 1\right)\cdot 31^{5} + \left(17 a + 19\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 1 + \left(24 a + 26\right)\cdot 31 + \left(17 a + 25\right)\cdot 31^{2} + \left(16 a + 23\right)\cdot 31^{3} + \left(6 a + 20\right)\cdot 31^{4} + \left(30 a + 1\right)\cdot 31^{5} + \left(7 a + 19\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 20 + \left(13 a + 13\right)\cdot 31 + \left(8 a + 27\right)\cdot 31^{2} + \left(16 a + 5\right)\cdot 31^{3} + \left(27 a + 2\right)\cdot 31^{4} + \left(8 a + 18\right)\cdot 31^{5} + \left(25 a + 7\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 20 + \left(26 a + 7\right)\cdot 31 + \left(5 a + 24\right)\cdot 31^{2} + \left(20 a + 10\right)\cdot 31^{3} + \left(7 a + 8\right)\cdot 31^{4} + 8\cdot 31^{5} + \left(13 a + 24\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 12 + \left(6 a + 23\right)\cdot 31 + \left(13 a + 5\right)\cdot 31^{2} + \left(14 a + 8\right)\cdot 31^{3} + \left(24 a + 17\right)\cdot 31^{4} + 24\cdot 31^{5} + \left(23 a + 4\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,5)(2,4,3)$
$(1,4,6,3,5,2)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$ $0$
$1$ $3$ $(1,6,5)(2,4,3)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,6)(2,3,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,5,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,6)(2,4,3)$ $-1$ $-1$
$3$ $6$ $(1,4,6,3,5,2)$ $0$ $0$
$3$ $6$ $(1,2,5,3,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.