Properties

Label 2.7e2_199.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7^{2} \cdot 199 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$9751= 7^{2} \cdot 199 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 10 x^{4} + 161 x^{3} + 628 x^{2} + 1160 x + 841 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_199.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 39 + \left(34 a + 5\right)\cdot 41 + \left(30 a + 22\right)\cdot 41^{2} + \left(21 a + 20\right)\cdot 41^{3} + \left(32 a + 7\right)\cdot 41^{4} + \left(35 a + 5\right)\cdot 41^{5} + \left(22 a + 15\right)\cdot 41^{6} + \left(26 a + 15\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 38 a + 24 + 15\cdot 41 + \left(39 a + 10\right)\cdot 41^{2} + \left(3 a + 2\right)\cdot 41^{3} + \left(26 a + 18\right)\cdot 41^{4} + \left(3 a + 6\right)\cdot 41^{5} + \left(38 a + 4\right)\cdot 41^{6} + \left(24 a + 10\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 18 + \left(6 a + 35\right)\cdot 41 + \left(10 a + 38\right)\cdot 41^{2} + \left(19 a + 13\right)\cdot 41^{3} + \left(8 a + 1\right)\cdot 41^{4} + \left(5 a + 39\right)\cdot 41^{5} + \left(18 a + 6\right)\cdot 41^{6} + \left(14 a + 31\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 5 + 25\cdot 41 + \left(39 a + 6\right)\cdot 41^{2} + \left(5 a + 25\right)\cdot 41^{3} + \left(27 a + 25\right)\cdot 41^{4} + \left(7 a + 1\right)\cdot 41^{5} + \left(37 a + 21\right)\cdot 41^{6} + \left(28 a + 5\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 23 + \left(40 a + 19\right)\cdot 41 + a\cdot 41^{2} + \left(35 a + 4\right)\cdot 41^{3} + \left(13 a + 19\right)\cdot 41^{4} + \left(33 a + 38\right)\cdot 41^{5} + \left(3 a + 1\right)\cdot 41^{6} + \left(12 a + 14\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 15 + \left(40 a + 21\right)\cdot 41 + \left(a + 3\right)\cdot 41^{2} + \left(37 a + 16\right)\cdot 41^{3} + \left(14 a + 10\right)\cdot 41^{4} + \left(37 a + 32\right)\cdot 41^{5} + \left(2 a + 32\right)\cdot 41^{6} + \left(16 a + 5\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,4,6,2,3)$
$(1,2,4)$
$(1,2,4)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$1$$3$$(1,4,2)(3,5,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,4)(3,6,5)$$2 \zeta_{3}$
$2$$3$$(1,2,4)$$\zeta_{3} + 1$
$2$$3$$(1,4,2)$$-\zeta_{3}$
$2$$3$$(1,4,2)(3,6,5)$$-1$
$3$$6$$(1,5,4,6,2,3)$$0$
$3$$6$$(1,3,2,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.