Properties

Label 2.7e2_17e2_23.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 7^{2} \cdot 17^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$325703= 7^{2} \cdot 17^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 89 x^{4} - 61 x^{3} + 2671 x^{2} - 721 x + 26971 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 5 + \left(36 a + 9\right)\cdot 43 + \left(20 a + 42\right)\cdot 43^{2} + \left(36 a + 17\right)\cdot 43^{3} + \left(33 a + 3\right)\cdot 43^{4} + \left(8 a + 21\right)\cdot 43^{5} + \left(12 a + 2\right)\cdot 43^{6} + \left(11 a + 31\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 33 + \left(36 a + 14\right)\cdot 43 + \left(20 a + 23\right)\cdot 43^{2} + \left(36 a + 7\right)\cdot 43^{3} + \left(33 a + 24\right)\cdot 43^{4} + \left(8 a + 26\right)\cdot 43^{5} + \left(12 a + 37\right)\cdot 43^{6} + \left(11 a + 42\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 40 + \left(6 a + 10\right)\cdot 43 + \left(22 a + 26\right)\cdot 43^{2} + \left(6 a + 33\right)\cdot 43^{3} + 9 a\cdot 43^{4} + \left(34 a + 39\right)\cdot 43^{5} + \left(30 a + 5\right)\cdot 43^{6} + \left(31 a + 30\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 6 + 20\cdot 43 + 5\cdot 43^{2} + 18\cdot 43^{3} + 28\cdot 43^{4} + 43^{5} + 17\cdot 43^{6} + 40\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 25 + \left(6 a + 16\right)\cdot 43 + \left(22 a + 7\right)\cdot 43^{2} + \left(6 a + 23\right)\cdot 43^{3} + \left(9 a + 21\right)\cdot 43^{4} + \left(34 a + 1\right)\cdot 43^{5} + \left(30 a + 41\right)\cdot 43^{6} + \left(31 a + 41\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 21 + 14\cdot 43 + 24\cdot 43^{2} + 28\cdot 43^{3} + 7\cdot 43^{4} + 39\cdot 43^{5} + 24\cdot 43^{6} + 28\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(3,6)(4,5)$
$(1,3)(2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$3$ $2$ $(1,3)(2,5)$ $0$
$3$ $2$ $(1,5)(2,3)(4,6)$ $0$
$2$ $3$ $(1,6,3)(2,4,5)$ $-1$
$2$ $6$ $(1,4,3,2,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.