Properties

Label 2.7e2_163e2.24t7.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 7^{2} \cdot 163^{2}$
Root number -1
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$1301881= 7^{2} \cdot 163^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 26 x^{6} + 6 x^{5} + 101 x^{4} + 53 x^{3} - 33 x^{2} - 17 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T7
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 13\cdot 19 + 6\cdot 19^{2} + 18\cdot 19^{3} + 16\cdot 19^{4} + 6\cdot 19^{5} + 16\cdot 19^{6} + 19^{7} + 17\cdot 19^{8} + 13\cdot 19^{9} + 15\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 15 a^{2} + a + 8 + \left(18 a^{2} + 3 a + 10\right)\cdot 19 + \left(16 a^{2} + 6 a + 12\right)\cdot 19^{2} + \left(11 a^{2} + 2 a + 16\right)\cdot 19^{3} + \left(14 a^{2} + 14 a + 3\right)\cdot 19^{4} + \left(a^{2} + 5 a + 7\right)\cdot 19^{5} + \left(10 a^{2} + 8 a + 9\right)\cdot 19^{6} + \left(10 a^{2} + 16 a\right)\cdot 19^{7} + \left(16 a^{2} + 1\right)\cdot 19^{8} + \left(a^{2} + 18 a + 10\right)\cdot 19^{9} + \left(11 a^{2} + 16 a + 5\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 18 a + 11 + \left(18 a^{2} + 13 a + 9\right)\cdot 19 + \left(9 a^{2} + 6\right)\cdot 19^{2} + \left(10 a^{2} + 7 a\right)\cdot 19^{3} + \left(18 a^{2} + 13 a + 8\right)\cdot 19^{4} + \left(16 a^{2} + 13 a + 3\right)\cdot 19^{5} + \left(7 a^{2} + 4 a + 16\right)\cdot 19^{6} + \left(14 a^{2} + 5 a + 10\right)\cdot 19^{7} + \left(4 a^{2} + 13 a + 7\right)\cdot 19^{8} + \left(5 a^{2} + 2 a + 6\right)\cdot 19^{9} + \left(14 a^{2} + a + 1\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 18 + \left(2 a + 12\right)\cdot 19 + \left(11 a^{2} + 12 a + 15\right)\cdot 19^{2} + \left(15 a^{2} + 9 a + 13\right)\cdot 19^{3} + \left(4 a^{2} + 10 a + 15\right)\cdot 19^{4} + \left(18 a + 15\right)\cdot 19^{5} + \left(a^{2} + 5 a + 16\right)\cdot 19^{6} + \left(13 a^{2} + 16 a\right)\cdot 19^{7} + \left(16 a^{2} + 4 a + 14\right)\cdot 19^{8} + \left(11 a^{2} + 17 a + 17\right)\cdot 19^{9} + \left(12 a^{2} + 15\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 17 a^{2} + 2 a + 10 + \left(10 a^{2} + 10 a + 13\right)\cdot 19 + \left(12 a^{2} + 13 a + 13\right)\cdot 19^{2} + \left(14 a^{2} + 18 a + 6\right)\cdot 19^{3} + \left(5 a^{2} + 3 a + 1\right)\cdot 19^{4} + \left(9 a^{2} + 4 a + 7\right)\cdot 19^{5} + \left(12 a^{2} + 16 a + 18\right)\cdot 19^{6} + \left(17 a^{2} + 4 a + 5\right)\cdot 19^{7} + \left(4 a^{2} + 4 a + 3\right)\cdot 19^{8} + \left(10 a^{2} + 3 a + 3\right)\cdot 19^{9} + \left(15 a^{2} + 15 a + 4\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 11 + 18\cdot 19^{2} + 9\cdot 19^{3} + 16\cdot 19^{4} + 5\cdot 19^{6} + 14\cdot 19^{7} + 8\cdot 19^{8} + 5\cdot 19^{9} + 16\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 12 a + 9 + \left(8 a^{2} + 18 a + 18\right)\cdot 19 + \left(15 a^{2} + a + 14\right)\cdot 19^{2} + \left(6 a^{2} + 11 a + 4\right)\cdot 19^{3} + \left(6 a^{2} + 17 a + 9\right)\cdot 19^{4} + \left(4 a^{2} + 6 a + 6\right)\cdot 19^{5} + \left(16 a^{2} + 10 a + 9\right)\cdot 19^{6} + \left(13 a^{2} + 3 a + 8\right)\cdot 19^{7} + \left(6 a^{2} + 5 a + 14\right)\cdot 19^{8} + \left(8 a^{2} + 15 a + 10\right)\cdot 19^{9} + \left(13 a^{2} + 11 a + 17\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 5 a + 8 + \left(9 a + 16\right)\cdot 19 + \left(10 a^{2} + 3 a + 6\right)\cdot 19^{2} + \left(16 a^{2} + 8 a + 5\right)\cdot 19^{3} + \left(6 a^{2} + 16 a + 4\right)\cdot 19^{4} + \left(5 a^{2} + 7 a + 9\right)\cdot 19^{5} + \left(9 a^{2} + 11 a + 3\right)\cdot 19^{6} + \left(6 a^{2} + 10 a + 14\right)\cdot 19^{7} + \left(7 a^{2} + 9 a + 9\right)\cdot 19^{8} + 8\cdot 19^{9} + \left(9 a^{2} + 11 a + 18\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,5)(4,7)$
$(2,3,4)(5,7,8)$
$(1,2,6,8)(3,7,5,4)$
$(1,5,6,3)(2,7,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,8)(3,5)(4,7)$$-2$
$4$$3$$(1,2,7)(4,6,8)$$-1$
$4$$3$$(1,7,2)(4,8,6)$$-1$
$6$$4$$(1,2,6,8)(3,7,5,4)$$0$
$4$$6$$(1,4,2,6,7,8)(3,5)$$1$
$4$$6$$(1,8,7,6,2,4)(3,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.