Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 a + 5 + \left(4 a + 12\right)\cdot 23 + \left(5 a + 13\right)\cdot 23^{2} + \left(9 a + 10\right)\cdot 23^{3} + \left(21 a + 5\right)\cdot 23^{4} + \left(22 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 20\cdot 23 + 23^{2} + 9\cdot 23^{3} + 18\cdot 23^{4} + 14\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 a + 9 + \left(4 a + 9\right)\cdot 23 + \left(5 a + 12\right)\cdot 23^{2} + \left(9 a + 15\right)\cdot 23^{3} + \left(21 a + 17\right)\cdot 23^{4} + \left(22 a + 14\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 17 a + 17 + \left(18 a + 14\right)\cdot 23 + \left(17 a + 19\right)\cdot 23^{2} + 13 a\cdot 23^{3} + \left(a + 16\right)\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 17 a + 21 + \left(18 a + 11\right)\cdot 23 + \left(17 a + 18\right)\cdot 23^{2} + \left(13 a + 5\right)\cdot 23^{3} + \left(a + 5\right)\cdot 23^{4} + 16\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 + 3\cdot 23^{2} + 4\cdot 23^{3} + 6\cdot 23^{4} + 7\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,6)(4,5)$ |
| $(2,5)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,6)(4,5)$ |
$-2$ |
| $3$ |
$2$ |
$(1,2)(3,6)(4,5)$ |
$0$ |
| $3$ |
$2$ |
$(1,4)(3,5)$ |
$0$ |
| $2$ |
$3$ |
$(1,6,4)(2,5,3)$ |
$-1$ |
| $2$ |
$6$ |
$(1,5,6,3,4,2)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.