Properties

Label 2.7e2_11e2_23.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 7^{2} \cdot 11^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$136367= 7^{2} \cdot 11^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 37 x^{4} + 211 x^{3} + 188 x^{2} - 3287 x + 167315 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 35\cdot 43 + 14\cdot 43^{2} + 13\cdot 43^{3} + 7\cdot 43^{4} + 17\cdot 43^{5} + 36\cdot 43^{6} + 41\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 13 + \left(36 a + 36\right)\cdot 43 + \left(41 a + 7\right)\cdot 43^{2} + \left(4 a + 24\right)\cdot 43^{3} + \left(21 a + 29\right)\cdot 43^{4} + \left(35 a + 12\right)\cdot 43^{5} + \left(34 a + 40\right)\cdot 43^{6} + \left(40 a + 32\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 28 + 18\cdot 43 + \left(22 a + 3\right)\cdot 43^{2} + \left(31 a + 10\right)\cdot 43^{3} + \left(12 a + 27\right)\cdot 43^{4} + \left(16 a + 32\right)\cdot 43^{5} + \left(20 a + 22\right)\cdot 43^{6} + \left(13 a + 25\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 18 + \left(6 a + 24\right)\cdot 43 + \left(a + 13\right)\cdot 43^{2} + \left(38 a + 30\right)\cdot 43^{3} + \left(21 a + 2\right)\cdot 43^{4} + \left(7 a + 27\right)\cdot 43^{5} + \left(8 a + 39\right)\cdot 43^{6} + \left(2 a + 38\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 15 + \left(42 a + 32\right)\cdot 43 + \left(20 a + 24\right)\cdot 43^{2} + \left(11 a + 19\right)\cdot 43^{3} + \left(30 a + 8\right)\cdot 43^{4} + \left(26 a + 36\right)\cdot 43^{5} + \left(22 a + 26\right)\cdot 43^{6} + \left(29 a + 18\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 13 + 25\cdot 43 + 21\cdot 43^{2} + 31\cdot 43^{3} + 10\cdot 43^{4} + 3\cdot 43^{5} + 6\cdot 43^{6} + 14\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5,6,3,4)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-2$
$3$ $2$ $(2,4)(3,5)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$2$ $3$ $(1,5,3)(2,6,4)$ $-1$
$2$ $6$ $(1,2,5,6,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.