Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 17 + 4\cdot 17^{2} + 8\cdot 17^{3} + 14\cdot 17^{4} + 5\cdot 17^{5} + 17^{6} + 17^{7} + 9\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 a + 16 + 8\cdot 17 + \left(a + 6\right)\cdot 17^{2} + \left(2 a + 7\right)\cdot 17^{4} + \left(2 a + 12\right)\cdot 17^{5} + \left(2 a + 6\right)\cdot 17^{6} + \left(a + 7\right)\cdot 17^{7} + 13\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 a + 11 + \left(16 a + 12\right)\cdot 17 + \left(15 a + 5\right)\cdot 17^{2} + 16 a\cdot 17^{3} + \left(14 a + 16\right)\cdot 17^{4} + \left(14 a + 1\right)\cdot 17^{5} + \left(14 a + 11\right)\cdot 17^{6} + \left(15 a + 10\right)\cdot 17^{7} + \left(16 a + 10\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 8 a + 8 + 16 a\cdot 17 + \left(15 a + 7\right)\cdot 17^{2} + \left(16 a + 16\right)\cdot 17^{3} + \left(14 a + 8\right)\cdot 17^{4} + \left(14 a + 12\right)\cdot 17^{5} + \left(14 a + 6\right)\cdot 17^{6} + \left(15 a + 6\right)\cdot 17^{7} + \left(16 a + 12\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 a + 2 + 4\cdot 17 + \left(a + 5\right)\cdot 17^{2} + 17^{3} + \left(2 a + 14\right)\cdot 17^{4} + \left(2 a + 1\right)\cdot 17^{5} + \left(2 a + 11\right)\cdot 17^{6} + \left(a + 11\right)\cdot 17^{7} + 11\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 + 6\cdot 17 + 5\cdot 17^{2} + 7\cdot 17^{3} + 7\cdot 17^{4} + 16\cdot 17^{5} + 13\cdot 17^{6} + 13\cdot 17^{7} + 10\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(2,4)(3,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-2$ |
| $3$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $3$ | $2$ | $(1,3)(4,6)$ | $0$ |
| $2$ | $3$ | $(1,5,3)(2,4,6)$ | $-1$ |
| $2$ | $6$ | $(1,4,5,6,3,2)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.