Properties

Label 2.7e2_11.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 7^{2} \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$539= 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} + x^{6} - 11 x^{4} + 4 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 24\cdot 37 + 8\cdot 37^{2} + 28\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 13\cdot 37 + 22\cdot 37^{2} + 19\cdot 37^{3} + 15\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 6\cdot 37 + 14\cdot 37^{2} + 20\cdot 37^{3} + 7\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 21\cdot 37 + 37^{2} + 25\cdot 37^{3} + 2\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 + 15\cdot 37 + 35\cdot 37^{2} + 11\cdot 37^{3} + 34\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 30\cdot 37 + 22\cdot 37^{2} + 16\cdot 37^{3} + 29\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 27 + 23\cdot 37 + 14\cdot 37^{2} + 17\cdot 37^{3} + 21\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 33 + 12\cdot 37 + 28\cdot 37^{2} + 8\cdot 37^{3} + 26\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,4,7)(2,8,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,3,4,7)(2,8,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.