Properties

Label 2.7e2_107.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 7^{2} \cdot 107 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$5243= 7^{2} \cdot 107 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 8 x^{4} + 17 x^{3} + 25 x^{2} - 356 x + 407 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_107.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 3 + \left(28 a + 33\right)\cdot 43 + \left(a + 29\right)\cdot 43^{2} + \left(9 a + 38\right)\cdot 43^{3} + \left(31 a + 23\right)\cdot 43^{4} + \left(15 a + 4\right)\cdot 43^{5} + \left(41 a + 25\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a + \left(14 a + 22\right)\cdot 43 + \left(41 a + 2\right)\cdot 43^{2} + \left(33 a + 3\right)\cdot 43^{3} + \left(11 a + 3\right)\cdot 43^{4} + \left(27 a + 32\right)\cdot 43^{5} + \left(a + 7\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 14 + \left(42 a + 39\right)\cdot 43 + \left(19 a + 10\right)\cdot 43^{2} + \left(26 a + 25\right)\cdot 43^{3} + \left(36 a + 37\right)\cdot 43^{4} + \left(32 a + 24\right)\cdot 43^{5} + \left(28 a + 25\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 41 a + 3 + \left(14 a + 38\right)\cdot 43 + \left(2 a + 11\right)\cdot 43^{2} + \left(33 a + 21\right)\cdot 43^{3} + \left(12 a + 18\right)\cdot 43^{4} + \left(42 a + 8\right)\cdot 43^{5} + \left(17 a + 15\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 1 + \left(28 a + 12\right)\cdot 43 + \left(40 a + 42\right)\cdot 43^{2} + \left(9 a + 8\right)\cdot 43^{3} + \left(30 a + 41\right)\cdot 43^{4} + 37\cdot 43^{5} + \left(25 a + 33\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 25 + 27\cdot 43 + \left(23 a + 31\right)\cdot 43^{2} + \left(16 a + 31\right)\cdot 43^{3} + \left(6 a + 4\right)\cdot 43^{4} + \left(10 a + 21\right)\cdot 43^{5} + \left(14 a + 21\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)(2,3,5)$
$(1,4,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$1$$3$$(1,6,4)(2,3,5)$$2 \zeta_{3}$
$1$$3$$(1,4,6)(2,5,3)$$-2 \zeta_{3} - 2$
$2$$3$$(1,4,6)(2,3,5)$$-1$
$2$$3$$(1,4,6)$$-\zeta_{3}$
$2$$3$$(1,6,4)$$\zeta_{3} + 1$
$3$$6$$(1,2,6,3,4,5)$$0$
$3$$6$$(1,5,4,3,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.