Properties

Label 2.7e2_107.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 7^{2} \cdot 107 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$5243= 7^{2} \cdot 107 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 11 x^{4} - 5 x^{3} + 17 x^{2} - 11 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 34 + \left(29 a + 26\right)\cdot 43 + \left(5 a + 32\right)\cdot 43^{2} + \left(30 a + 2\right)\cdot 43^{3} + \left(31 a + 31\right)\cdot 43^{4} + \left(17 a + 2\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 + 12\cdot 43 + 36\cdot 43^{2} + 36\cdot 43^{3} + 30\cdot 43^{4} + 30\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 40 + \left(29 a + 8\right)\cdot 43 + \left(5 a + 9\right)\cdot 43^{2} + \left(30 a + 1\right)\cdot 43^{3} + \left(31 a + 11\right)\cdot 43^{4} + \left(17 a + 2\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 1 + \left(13 a + 34\right)\cdot 43 + \left(37 a + 28\right)\cdot 43^{2} + \left(12 a + 25\right)\cdot 43^{3} + \left(11 a + 12\right)\cdot 43^{4} + \left(25 a + 31\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 33 + 37\cdot 43 + 12\cdot 43^{2} + 35\cdot 43^{3} + 10\cdot 43^{4} + 30\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 38 + \left(13 a + 8\right)\cdot 43 + \left(37 a + 9\right)\cdot 43^{2} + \left(12 a + 27\right)\cdot 43^{3} + \left(11 a + 32\right)\cdot 43^{4} + \left(25 a + 31\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(4,5)$
$(1,3)(2,5)(4,6)$
$(1,2,6)(3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-2$
$3$ $2$ $(2,6)(4,5)$ $0$
$3$ $2$ $(1,3)(2,4)(5,6)$ $0$
$2$ $3$ $(1,2,6)(3,5,4)$ $-1$
$2$ $6$ $(1,5,6,3,2,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.