Properties

Label 2.7_977.4t3.3
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 977 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6839= 7 \cdot 977 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 60 x^{6} - 166 x^{5} + 607 x^{4} - 942 x^{3} - 412 x^{2} + 856 x + 22016 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 42\cdot 43 + 23\cdot 43^{2} + 29\cdot 43^{3} + 38\cdot 43^{4} + 25\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 1 + 43 + 19\cdot 43^{2} + 13\cdot 43^{3} + 4\cdot 43^{4} + 17\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 + 21\cdot 43 + 20\cdot 43^{2} + 24\cdot 43^{3} + 8\cdot 43^{4} + 36\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 7 + 26\cdot 43 + 38\cdot 43^{2} + 11\cdot 43^{3} + 27\cdot 43^{4} + 16\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 3\cdot 43 + 40\cdot 43^{2} + 22\cdot 43^{3} + 31\cdot 43^{4} + 35\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 32 + 39\cdot 43 + 2\cdot 43^{2} + 20\cdot 43^{3} + 11\cdot 43^{4} + 7\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 37 + 16\cdot 43 + 4\cdot 43^{2} + 31\cdot 43^{3} + 15\cdot 43^{4} + 26\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 38 + 21\cdot 43 + 22\cdot 43^{2} + 18\cdot 43^{3} + 34\cdot 43^{4} + 6\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,7)(6,8)$
$(1,3,4,6)(2,8,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,3)(4,5)(6,7)$ $0$
$2$ $4$ $(1,3,4,6)(2,8,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.