Properties

Label 2.7_97.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 7 \cdot 97 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$679= 7 \cdot 97 $
Artin number field: Splitting field of $f= x^{9} + 2 x^{7} - 7 x^{6} + 3 x^{5} - 7 x^{4} + 16 x^{3} + 7 x^{2} - 13 x + 7 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{3} + 9 x + 76 $
Roots:
$r_{ 1 }$ $=$ $ 57 a^{2} + 4 a + 45 + \left(69 a^{2} + 37 a + 53\right)\cdot 79 + \left(63 a^{2} + 72 a + 17\right)\cdot 79^{2} + \left(15 a^{2} + 43 a + 8\right)\cdot 79^{3} + \left(28 a^{2} + 61 a + 9\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 76 a^{2} + 39 a + 22 + \left(38 a^{2} + 10 a + 67\right)\cdot 79 + \left(5 a^{2} + 11 a + 29\right)\cdot 79^{2} + \left(70 a^{2} + 39 a + 71\right)\cdot 79^{3} + \left(50 a^{2} + 38\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 32 a + 62 + \left(60 a^{2} + 12 a + 22\right)\cdot 79 + \left(49 a^{2} + 45 a + 35\right)\cdot 79^{2} + \left(53 a^{2} + 69 a + 46\right)\cdot 79^{3} + \left(39 a^{2} + 57 a + 32\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 a^{2} + 27 a + 53 + \left(12 a^{2} + 43 a + 68\right)\cdot 79 + \left(44 a^{2} + 31 a + 24\right)\cdot 79^{2} + \left(71 a^{2} + 39 a + 1\right)\cdot 79^{3} + \left(15 a^{2} + 34 a + 66\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 67 a + 25 + \left(62 a^{2} + 70 a + 7\right)\cdot 79 + \left(59 a^{2} + 42 a + 72\right)\cdot 79^{2} + \left(18 a^{2} + 18 a + 25\right)\cdot 79^{3} + \left(46 a^{2} + 55 a + 38\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a^{2} + 12 a + 43 + \left(33 a^{2} + 31 a + 19\right)\cdot 79 + \left(61 a^{2} + 3 a + 26\right)\cdot 79^{2} + \left(33 a^{2} + 75 a + 6\right)\cdot 79^{3} + \left(73 a^{2} + 30 a + 77\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 21 a^{2} + 8 a + 66 + \left(26 a^{2} + 50 a + 29\right)\cdot 79 + \left(34 a^{2} + 42 a + 77\right)\cdot 79^{2} + \left(44 a^{2} + 16 a + 21\right)\cdot 79^{3} + \left(4 a^{2} + 41 a + 25\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 14 a^{2} + 13 a + 45 + \left(27 a^{2} + 25 a + 75\right)\cdot 79 + \left(29 a^{2} + 36 a + 14\right)\cdot 79^{2} + \left(16 a^{2} + 65\right)\cdot 79^{3} + \left(12 a^{2} + 44 a + 43\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 55 a^{2} + 35 a + 34 + \left(64 a^{2} + 35 a + 50\right)\cdot 79 + \left(46 a^{2} + 30 a + 17\right)\cdot 79^{2} + \left(70 a^{2} + 13 a + 69\right)\cdot 79^{3} + \left(44 a^{2} + 69 a + 63\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,5)(2,4,8)(3,9,6)$
$(1,5)(2,3)(4,6)(8,9)$
$(1,6,2,7,3,4,5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,5)(2,3)(4,6)(8,9)$ $0$ $0$ $0$
$2$ $3$ $(1,7,5)(2,4,8)(3,9,6)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,6,2,7,3,4,5,9,8)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,2,3,5,8,6,7,4,9)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,3,8,7,9,2,5,6,4)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.