Properties

Label 2.7_67.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7 \cdot 67 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$469= 7 \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + x^{3} + x^{2} - 5 x + 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_67.6t1.5c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 33 + \left(10 a + 2\right)\cdot 59 + \left(2 a + 45\right)\cdot 59^{2} + \left(46 a + 43\right)\cdot 59^{3} + \left(8 a + 34\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 a + 35 + \left(38 a + 10\right)\cdot 59 + \left(3 a + 40\right)\cdot 59^{2} + \left(47 a + 20\right)\cdot 59^{3} + \left(9 a + 49\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 a + 57 + \left(48 a + 47\right)\cdot 59 + \left(56 a + 36\right)\cdot 59^{2} + \left(12 a + 28\right)\cdot 59^{3} + \left(50 a + 56\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 27 + \left(13 a + 9\right)\cdot 59 + \left(2 a + 1\right)\cdot 59^{2} + \left(45 a + 18\right)\cdot 59^{3} + \left(12 a + 28\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 6 + \left(45 a + 44\right)\cdot 59 + \left(56 a + 48\right)\cdot 59^{2} + \left(13 a + 1\right)\cdot 59^{3} + \left(46 a + 55\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 22 + \left(20 a + 3\right)\cdot 59 + \left(55 a + 5\right)\cdot 59^{2} + \left(11 a + 5\right)\cdot 59^{3} + \left(49 a + 12\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4,3)$
$(1,2)(3,5)(4,6)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$1$$3$$(1,6,5)(2,4,3)$$-2 \zeta_{3} - 2$
$1$$3$$(1,5,6)(2,3,4)$$2 \zeta_{3}$
$2$$3$$(2,4,3)$$-\zeta_{3}$
$2$$3$$(2,3,4)$$\zeta_{3} + 1$
$2$$3$$(1,6,5)(2,3,4)$$-1$
$3$$6$$(1,2,6,4,5,3)$$0$
$3$$6$$(1,3,5,4,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.