Properties

Label 2.7_59.6t5.6c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 7 \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$413= 7 \cdot 59 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 4 x^{7} - 6 x^{6} + 18 x^{5} + 2 x^{4} - 13 x^{3} - 7 x^{2} - 18 x + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_59.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 13 a + 12 + \left(10 a^{2} + 3 a + 3\right)\cdot 17 + \left(16 a^{2} + 10 a + 1\right)\cdot 17^{2} + \left(5 a^{2} + 8 a + 14\right)\cdot 17^{3} + \left(11 a^{2} + 3 a + 3\right)\cdot 17^{4} + \left(8 a^{2} + 3 a + 16\right)\cdot 17^{5} + \left(13 a^{2} + 15 a + 2\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 a^{2} + 11 a + 11 + \left(5 a^{2} + 5 a + 4\right)\cdot 17 + \left(7 a^{2} + 14 a + 12\right)\cdot 17^{2} + \left(a^{2} + 15 a + 2\right)\cdot 17^{3} + \left(8 a^{2} + 5 a + 12\right)\cdot 17^{4} + \left(7 a^{2} + 2 a + 8\right)\cdot 17^{5} + \left(15 a^{2} + 6 a + 15\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 7 a + 8 + \left(6 a^{2} + 14 a + 6\right)\cdot 17 + \left(16 a^{2} + 4 a + 13\right)\cdot 17^{2} + \left(2 a^{2} + 12 a + 12\right)\cdot 17^{3} + \left(3 a + 2\right)\cdot 17^{4} + \left(4 a^{2} + 4 a + 11\right)\cdot 17^{5} + \left(14 a^{2} + 8 a + 4\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 2 a + 2 + \left(15 a^{2} + 7 a + 7\right)\cdot 17 + \left(4 a^{2} + 10 a + 10\right)\cdot 17^{2} + \left(5 a^{2} + 4 a + 13\right)\cdot 17^{3} + \left(11 a^{2} + 5 a + 3\right)\cdot 17^{4} + \left(5 a^{2} + 12 a + 14\right)\cdot 17^{5} + \left(13 a^{2} + a + 2\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 3 a^{2} + 7 a + 8 + \left(10 a^{2} + 11 a + 7\right)\cdot 17 + \left(12 a^{2} + 9 a + 4\right)\cdot 17^{2} + \left(16 a^{2} + 6 a + 7\right)\cdot 17^{3} + \left(4 a^{2} + 8 a + 4\right)\cdot 17^{4} + \left(16 a^{2} + 7 a + 3\right)\cdot 17^{5} + \left(10 a^{2} + 8 a + 1\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 8 a + 6 + \left(10 a^{2} + 14 a + 15\right)\cdot 17 + \left(10 a^{2} + 14 a + 3\right)\cdot 17^{2} + \left(8 a + 11\right)\cdot 17^{3} + \left(10 a^{2} + 2 a + 3\right)\cdot 17^{4} + \left(13 a^{2} + 2 a + 6\right)\cdot 17^{5} + \left(6 a^{2} + 12 a + 5\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 2 a + 8 + \left(5 a + 2\right)\cdot 17 + \left(7 a^{2} + 14 a + 7\right)\cdot 17^{2} + \left(13 a^{2} + 12 a + 8\right)\cdot 17^{3} + \left(6 a^{2} + 10 a + 1\right)\cdot 17^{4} + \left(16 a^{2} + 10 a + 8\right)\cdot 17^{5} + \left(12 a^{2} + 13 a + 9\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + 2 a + 16 + \left(8 a^{2} + 6 a + 13\right)\cdot 17 + \left(12 a^{2} + 13 a + 9\right)\cdot 17^{2} + \left(5 a^{2} + 3 a + 2\right)\cdot 17^{3} + \left(11 a^{2} + 8 a + 15\right)\cdot 17^{4} + \left(2 a^{2} + a\right)\cdot 17^{5} + \left(7 a^{2} + 10\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 15 a^{2} + 16 a + 16 + \left(16 a + 6\right)\cdot 17 + \left(14 a^{2} + 9 a + 5\right)\cdot 17^{2} + \left(15 a^{2} + 11 a + 12\right)\cdot 17^{3} + \left(3 a^{2} + 2 a + 3\right)\cdot 17^{4} + \left(10 a^{2} + 7 a + 16\right)\cdot 17^{5} + \left(7 a^{2} + 2 a + 15\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5)(6,8)(7,9)$
$(1,7,2)(3,9,8)(4,6,5)$
$(2,8)(3,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(6,8)(7,9)$$0$
$1$$3$$(1,6,9)(2,4,3)(5,8,7)$$2 \zeta_{3}$
$1$$3$$(1,9,6)(2,3,4)(5,7,8)$$-2 \zeta_{3} - 2$
$2$$3$$(1,7,2)(3,9,8)(4,6,5)$$\zeta_{3} + 1$
$2$$3$$(1,2,7)(3,8,9)(4,5,6)$$-\zeta_{3}$
$2$$3$$(1,3,5)(2,8,6)(4,7,9)$$-1$
$3$$6$$(1,4,6,3,9,2)(5,7,8)$$0$
$3$$6$$(1,2,9,3,6,4)(5,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.