Properties

Label 2.7_59.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7 \cdot 59 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$413= 7 \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 11 x^{4} - 13 x^{3} + 28 x^{2} - 15 x + 17 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 12 + \left(10 a + 2\right)\cdot 13 + \left(2 a + 2\right)\cdot 13^{2} + \left(10 a + 6\right)\cdot 13^{3} + \left(12 a + 4\right)\cdot 13^{4} + \left(6 a + 8\right)\cdot 13^{5} + \left(4 a + 9\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ a + 7 + \left(a + 8\right)\cdot 13 + \left(7 a + 6\right)\cdot 13^{2} + \left(7 a + 11\right)\cdot 13^{3} + \left(2 a + 1\right)\cdot 13^{4} + \left(8 a + 2\right)\cdot 13^{5} + \left(6 a + 6\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 8 + \left(a + 1\right)\cdot 13 + \left(3 a + 4\right)\cdot 13^{2} + \left(8 a + 8\right)\cdot 13^{3} + \left(10 a + 6\right)\cdot 13^{4} + \left(10 a + 2\right)\cdot 13^{5} + \left(a + 10\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 7 + \left(2 a + 5\right)\cdot 13 + \left(10 a + 7\right)\cdot 13^{2} + 2 a\cdot 13^{3} + 7\cdot 13^{4} + \left(6 a + 2\right)\cdot 13^{5} + \left(8 a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 8 + \left(11 a + 8\right)\cdot 13 + \left(5 a + 12\right)\cdot 13^{2} + \left(5 a + 11\right)\cdot 13^{3} + \left(10 a + 9\right)\cdot 13^{4} + \left(4 a + 7\right)\cdot 13^{5} + \left(6 a + 4\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 12 + \left(11 a + 11\right)\cdot 13 + \left(9 a + 5\right)\cdot 13^{2} + 4 a\cdot 13^{3} + \left(2 a + 9\right)\cdot 13^{4} + \left(2 a + 2\right)\cdot 13^{5} + \left(11 a + 1\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$ $0$
$1$ $3$ $(1,2,3)(4,5,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,2)(4,6,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,2,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,3,2)(4,5,6)$ $-1$ $-1$
$3$ $6$ $(1,5,2,6,3,4)$ $0$ $0$
$3$ $6$ $(1,4,3,6,2,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.