Properties

Label 2.7_557.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 7 \cdot 557 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$3899= 7 \cdot 557 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 16 x^{5} + 2 x^{4} - 33 x^{3} - 41 x^{2} + 110 x - 47 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.7_557.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 9 + 16 a\cdot 23 + \left(6 a + 1\right)\cdot 23^{2} + \left(a + 15\right)\cdot 23^{3} + \left(16 a + 3\right)\cdot 23^{4} + \left(17 a + 13\right)\cdot 23^{5} + \left(13 a + 13\right)\cdot 23^{6} + \left(13 a + 18\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 + 7\cdot 23 + 10\cdot 23^{2} + 14\cdot 23^{3} + 20\cdot 23^{4} + 4\cdot 23^{5} + 13\cdot 23^{6} + 3\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 13 + \left(15 a + 10\right)\cdot 23 + \left(11 a + 12\right)\cdot 23^{2} + \left(9 a + 1\right)\cdot 23^{3} + \left(7 a + 16\right)\cdot 23^{4} + \left(4 a + 7\right)\cdot 23^{5} + \left(16 a + 12\right)\cdot 23^{6} + \left(19 a + 5\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 5 + 7 a\cdot 23 + \left(11 a + 20\right)\cdot 23^{2} + \left(13 a + 8\right)\cdot 23^{3} + \left(15 a + 21\right)\cdot 23^{4} + \left(18 a + 8\right)\cdot 23^{5} + \left(6 a + 17\right)\cdot 23^{6} + \left(3 a + 5\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 15 + 23 + 20\cdot 23^{2} + 7\cdot 23^{3} + 7\cdot 23^{4} + 9\cdot 23^{5} + 13\cdot 23^{6} + 21\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 9 + \left(4 a + 20\right)\cdot 23 + \left(20 a + 8\right)\cdot 23^{2} + \left(12 a + 2\right)\cdot 23^{3} + \left(a + 22\right)\cdot 23^{4} + \left(7 a + 12\right)\cdot 23^{5} + \left(4 a + 21\right)\cdot 23^{6} + \left(7 a + 8\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 20 + \left(18 a + 12\right)\cdot 23 + \left(2 a + 21\right)\cdot 23^{2} + \left(10 a + 7\right)\cdot 23^{3} + \left(21 a + 12\right)\cdot 23^{4} + \left(15 a + 2\right)\cdot 23^{5} + 18 a\cdot 23^{6} + \left(15 a + 19\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 22 + \left(6 a + 15\right)\cdot 23 + \left(16 a + 20\right)\cdot 23^{2} + \left(21 a + 10\right)\cdot 23^{3} + \left(6 a + 11\right)\cdot 23^{4} + \left(5 a + 9\right)\cdot 23^{5} + 9 a\cdot 23^{6} + \left(9 a + 9\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8,6)(4,7,5)$
$(1,5,3,2)(4,7,8,6)$
$(2,5)(4,6)(7,8)$
$(1,7,3,6)(2,8,5,4)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,8)(6,7)$$-2$
$12$$2$$(2,5)(4,6)(7,8)$$0$
$8$$3$$(1,4,6)(3,8,7)$$-1$
$6$$4$$(1,7,3,6)(2,8,5,4)$$0$
$8$$6$$(1,7,4,3,6,8)(2,5)$$1$
$6$$8$$(1,8,2,7,3,4,5,6)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,4,2,6,3,8,5,7)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.