Properties

Label 2.7_53.8t6.2
Dimension 2
Group $D_{8}$
Conductor $ 7 \cdot 53 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$371= 7 \cdot 53 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 4 x^{6} - 6 x^{5} + 8 x^{4} - 2 x^{3} + 9 x^{2} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 74\cdot 113 + 84\cdot 113^{2} + 22\cdot 113^{3} + 112\cdot 113^{4} + 13\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 41 + 110\cdot 113 + 96\cdot 113^{2} + 65\cdot 113^{3} + 69\cdot 113^{4} + 110\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 58 + 92\cdot 113 + 113^{2} + 60\cdot 113^{3} + 62\cdot 113^{4} + 93\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 62 + 56\cdot 113 + 48\cdot 113^{2} + 98\cdot 113^{3} + 87\cdot 113^{4} + 103\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 63 + 19\cdot 113 + 49\cdot 113^{2} + 41\cdot 113^{3} + 36\cdot 113^{4} + 94\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 74 + 102\cdot 113 + 76\cdot 113^{2} + 46\cdot 113^{3} + 46\cdot 113^{4} + 30\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 75 + 60\cdot 113 + 64\cdot 113^{2} + 87\cdot 113^{3} + 99\cdot 113^{4} + 6\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 78 + 48\cdot 113 + 29\cdot 113^{2} + 29\cdot 113^{3} + 50\cdot 113^{4} + 111\cdot 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,3,4,6,2,7,8,5)$
$(1,4)(2,8)(5,6)$
$(1,8,2,4)(3,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-2$ $-2$
$4$ $2$ $(1,4)(2,8)(5,6)$ $0$ $0$
$4$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $0$ $0$
$2$ $4$ $(1,4,2,8)(3,6,7,5)$ $0$ $0$
$2$ $8$ $(1,3,4,6,2,7,8,5)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,6,8,3,2,5,4,7)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.