Properties

Label 2.7_53.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7 \cdot 53 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$371= 7 \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 8 x^{4} + 16 x^{3} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Even
Determinant: 1.7_53.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 8 + \left(8 a + 15\right)\cdot 41 + \left(20 a + 1\right)\cdot 41^{2} + \left(7 a + 20\right)\cdot 41^{3} + \left(31 a + 19\right)\cdot 41^{4} + \left(14 a + 27\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 13 + \left(34 a + 36\right)\cdot 41 + \left(23 a + 13\right)\cdot 41^{2} + \left(3 a + 30\right)\cdot 41^{3} + \left(14 a + 3\right)\cdot 41^{4} + 6\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 11 + \left(6 a + 3\right)\cdot 41 + \left(17 a + 10\right)\cdot 41^{2} + \left(37 a + 17\right)\cdot 41^{3} + \left(26 a + 1\right)\cdot 41^{4} + \left(40 a + 34\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 31 + \left(32 a + 6\right)\cdot 41 + \left(20 a + 12\right)\cdot 41^{2} + \left(33 a + 22\right)\cdot 41^{3} + \left(9 a + 23\right)\cdot 41^{4} + \left(26 a + 40\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 7 a + \left(2 a + 31\right)\cdot 41 + \left(3 a + 18\right)\cdot 41^{2} + \left(11 a + 1\right)\cdot 41^{3} + \left(4 a + 16\right)\cdot 41^{4} + \left(15 a + 7\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 34 a + 21 + \left(38 a + 30\right)\cdot 41 + \left(37 a + 25\right)\cdot 41^{2} + \left(29 a + 31\right)\cdot 41^{3} + \left(36 a + 17\right)\cdot 41^{4} + \left(25 a + 7\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,5,4)$
$(3,4,5)$
$(1,4,6,5,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,4)(3,6)$$0$
$1$$3$$(1,2,6)(3,5,4)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,2)(3,4,5)$$2 \zeta_{3}$
$2$$3$$(3,4,5)$$\zeta_{3} + 1$
$2$$3$$(3,5,4)$$-\zeta_{3}$
$2$$3$$(1,6,2)(3,5,4)$$-1$
$3$$6$$(1,4,6,5,2,3)$$0$
$3$$6$$(1,3,2,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.