Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35 a + 8 + \left(8 a + 15\right)\cdot 41 + \left(20 a + 1\right)\cdot 41^{2} + \left(7 a + 20\right)\cdot 41^{3} + \left(31 a + 19\right)\cdot 41^{4} + \left(14 a + 27\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 a + 13 + \left(34 a + 36\right)\cdot 41 + \left(23 a + 13\right)\cdot 41^{2} + \left(3 a + 30\right)\cdot 41^{3} + \left(14 a + 3\right)\cdot 41^{4} + 6\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 a + 11 + \left(6 a + 3\right)\cdot 41 + \left(17 a + 10\right)\cdot 41^{2} + \left(37 a + 17\right)\cdot 41^{3} + \left(26 a + 1\right)\cdot 41^{4} + \left(40 a + 34\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 a + 31 + \left(32 a + 6\right)\cdot 41 + \left(20 a + 12\right)\cdot 41^{2} + \left(33 a + 22\right)\cdot 41^{3} + \left(9 a + 23\right)\cdot 41^{4} + \left(26 a + 40\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a + \left(2 a + 31\right)\cdot 41 + \left(3 a + 18\right)\cdot 41^{2} + \left(11 a + 1\right)\cdot 41^{3} + \left(4 a + 16\right)\cdot 41^{4} + \left(15 a + 7\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 34 a + 21 + \left(38 a + 30\right)\cdot 41 + \left(37 a + 25\right)\cdot 41^{2} + \left(29 a + 31\right)\cdot 41^{3} + \left(36 a + 17\right)\cdot 41^{4} + \left(25 a + 7\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,6)(3,5,4)$ |
| $(3,4,5)$ |
| $(1,4,6,5,2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $3$ |
$2$ |
$(1,5)(2,4)(3,6)$ |
$0$ |
$0$ |
| $1$ |
$3$ |
$(1,2,6)(3,5,4)$ |
$2 \zeta_{3}$ |
$-2 \zeta_{3} - 2$ |
| $1$ |
$3$ |
$(1,6,2)(3,4,5)$ |
$-2 \zeta_{3} - 2$ |
$2 \zeta_{3}$ |
| $2$ |
$3$ |
$(3,4,5)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $2$ |
$3$ |
$(3,5,4)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $2$ |
$3$ |
$(1,6,2)(3,5,4)$ |
$-1$ |
$-1$ |
| $3$ |
$6$ |
$(1,4,6,5,2,3)$ |
$0$ |
$0$ |
| $3$ |
$6$ |
$(1,3,2,5,6,4)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.