Properties

Label 2.7_53.4t3.3
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 53 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$371= 7 \cdot 53 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 24 x^{6} - 58 x^{5} + 115 x^{4} - 138 x^{3} + 242 x^{2} - 182 x + 203 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 98\cdot 113 + 12\cdot 113^{2} + 30\cdot 113^{3} + 98\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 + 44\cdot 113 + 7\cdot 113^{2} + 90\cdot 113^{3} + 46\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 112\cdot 113 + 79\cdot 113^{2} + 10\cdot 113^{3} + 60\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 54\cdot 113 + 38\cdot 113^{2} + 42\cdot 113^{3} + 104\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 + 58\cdot 113 + 74\cdot 113^{2} + 70\cdot 113^{3} + 8\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 76 + 33\cdot 113^{2} + 102\cdot 113^{3} + 52\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 77 + 68\cdot 113 + 105\cdot 113^{2} + 22\cdot 113^{3} + 66\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 104 + 14\cdot 113 + 100\cdot 113^{2} + 82\cdot 113^{3} + 14\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,5)(2,3,4,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.