Properties

Label 2.7_43.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 7 \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$301= 7 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + x^{3} + 7 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_43.6t1.5c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 20 + \left(a + 29\right)\cdot 41 + \left(34 a + 37\right)\cdot 41^{2} + \left(24 a + 5\right)\cdot 41^{3} + \left(31 a + 26\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 5 + \left(8 a + 31\right)\cdot 41 + \left(33 a + 40\right)\cdot 41^{2} + \left(15 a + 12\right)\cdot 41^{3} + \left(5 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 11 + \left(39 a + 38\right)\cdot 41 + \left(6 a + 14\right)\cdot 41^{2} + \left(16 a + 5\right)\cdot 41^{3} + \left(9 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 5 + \left(11 a + 6\right)\cdot 41 + \left(21 a + 25\right)\cdot 41^{2} + \left(23 a + 31\right)\cdot 41^{3} + \left(25 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 30 + \left(29 a + 18\right)\cdot 41 + \left(19 a + 36\right)\cdot 41^{2} + \left(17 a + 39\right)\cdot 41^{3} + \left(15 a + 11\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 12 + \left(32 a + 40\right)\cdot 41 + \left(7 a + 8\right)\cdot 41^{2} + \left(25 a + 27\right)\cdot 41^{3} + \left(35 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,3,2,5)$
$(1,2,4)(3,6,5)$
$(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$1$$3$$(1,4,2)(3,5,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,4)(3,6,5)$$2 \zeta_{3}$
$2$$3$$(3,5,6)$$-\zeta_{3}$
$2$$3$$(3,6,5)$$\zeta_{3} + 1$
$2$$3$$(1,4,2)(3,6,5)$$-1$
$3$$6$$(1,6,4,3,2,5)$$0$
$3$$6$$(1,5,2,3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.