Properties

Label 2.7_37e2.3t2.1c1
Dimension 2
Group $S_3$
Conductor $ 7 \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$9583= 7 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 12 x + 63 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 11\cdot 43 + 22\cdot 43^{2} + 27\cdot 43^{3} + 22\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 22\cdot 43 + 25\cdot 43^{2} + 23\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 9\cdot 43 + 38\cdot 43^{2} + 34\cdot 43^{3} + 36\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.