Properties

Label 2.7_37.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 7 \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$259= 7 \cdot 37 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 10 x^{7} - 15 x^{6} + 11 x^{5} - 41 x^{4} - x^{3} - 74 x - 37 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7_37.6t1.4c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 8 + \left(15 a + 15\right)\cdot 23 + \left(10 a^{2} + 2 a + 5\right)\cdot 23^{2} + \left(19 a^{2} + 20 a + 18\right)\cdot 23^{3} + \left(2 a^{2} + 5 a + 3\right)\cdot 23^{4} + \left(20 a^{2} + 3 a + 19\right)\cdot 23^{5} + \left(12 a^{2} + 3 a + 1\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 22 a^{2} + a + 22 + \left(9 a^{2} + 19 a + 20\right)\cdot 23 + \left(9 a^{2} + 2 a + 4\right)\cdot 23^{2} + \left(a^{2} + 22 a + 17\right)\cdot 23^{3} + \left(9 a^{2} + 11 a + 19\right)\cdot 23^{4} + \left(7 a^{2} + 17 a + 9\right)\cdot 23^{5} + \left(18 a^{2} + 5 a + 1\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 5 a + 20 + \left(7 a^{2} + 3 a + 9\right)\cdot 23 + \left(9 a^{2} + 16 a + 12\right)\cdot 23^{2} + \left(19 a^{2} + 5 a + 10\right)\cdot 23^{3} + \left(7 a^{2} + 21 a + 10\right)\cdot 23^{4} + \left(9 a^{2} + 14 a + 12\right)\cdot 23^{5} + \left(18 a^{2} + 22 a + 1\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 7 a + 2 + \left(13 a^{2} + 10 a + 10\right)\cdot 23 + \left(4 a^{2} + 12 a + 21\right)\cdot 23^{2} + \left(18 a^{2} + a + 8\right)\cdot 23^{3} + \left(8 a^{2} + 19 a + 19\right)\cdot 23^{4} + \left(2 a^{2} + 6 a + 10\right)\cdot 23^{5} + \left(21 a^{2} + 8 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 16 a^{2} + 14 a + 14 + \left(9 a^{2} + 20 a + 20\right)\cdot 23 + \left(8 a^{2} + 7 a + 18\right)\cdot 23^{2} + \left(8 a^{2} + a + 18\right)\cdot 23^{3} + \left(11 a^{2} + 21 a + 22\right)\cdot 23^{4} + \left(12 a + 15\right)\cdot 23^{5} + \left(12 a^{2} + 11 a\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 20 a + 17 + \left(13 a^{2} + 11 a + 9\right)\cdot 23 + \left(3 a^{2} + 17 a + 12\right)\cdot 23^{2} + \left(2 a^{2} + 3 a + 10\right)\cdot 23^{3} + \left(11 a^{2} + 5 a + 22\right)\cdot 23^{4} + \left(18 a^{2} + 2 a + 16\right)\cdot 23^{5} + \left(14 a^{2} + 14 a + 19\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 15 a^{2} + 17 a + 5 + \left(5 a^{2} + 15\right)\cdot 23 + \left(4 a^{2} + 4 a + 5\right)\cdot 23^{2} + \left(2 a^{2} + 18 a + 18\right)\cdot 23^{3} + \left(6 a^{2} + 12 a + 15\right)\cdot 23^{4} + \left(6 a^{2} + 13 a\right)\cdot 23^{5} + \left(9 a^{2} + 17 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 7 a^{2} + 11 a + 2 + \left(2 a^{2} + 9 a + 3\right)\cdot 23 + \left(9 a^{2} + 17 a + 12\right)\cdot 23^{2} + \left(8 a^{2} + 15 a + 3\right)\cdot 23^{3} + \left(6 a^{2} + 5 a + 16\right)\cdot 23^{4} + \left(11 a^{2} + a + 22\right)\cdot 23^{5} + \left(6 a^{2} + 15 a\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 15 a^{2} + 15 a + 5 + \left(7 a^{2} + a + 10\right)\cdot 23 + \left(10 a^{2} + 11 a + 21\right)\cdot 23^{2} + \left(12 a^{2} + 3 a + 8\right)\cdot 23^{3} + \left(5 a^{2} + 12 a + 7\right)\cdot 23^{4} + \left(16 a^{2} + 19 a + 6\right)\cdot 23^{5} + \left(a^{2} + 16 a + 2\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,5,2,4,7)(6,8,9)$
$(1,6)(4,8)(5,9)$
$(2,6)(3,8)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,4)(5,7)$$0$
$1$$3$$(1,5,4)(2,7,3)(6,9,8)$$2 \zeta_{3}$
$1$$3$$(1,4,5)(2,3,7)(6,8,9)$$-2 \zeta_{3} - 2$
$2$$3$$(1,8,7)(2,4,9)(3,5,6)$$\zeta_{3} + 1$
$2$$3$$(1,7,8)(2,9,4)(3,6,5)$$-\zeta_{3}$
$2$$3$$(1,2,6)(3,8,4)(5,7,9)$$-1$
$3$$6$$(1,3,5,2,4,7)(6,8,9)$$0$
$3$$6$$(1,7,4,2,5,3)(6,9,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.