Properties

Label 2.7_37.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$259= 7 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 14 x^{5} + 20 x^{4} - 110 x^{3} + 149 x^{2} - 198 x + 324 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 44\cdot 67 + 64\cdot 67^{2} + 35\cdot 67^{3} + 23\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 5\cdot 67 + 3\cdot 67^{2} + 48\cdot 67^{3} + 2\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 10\cdot 67 + 56\cdot 67^{2} + 31\cdot 67^{3} + 44\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 18\cdot 67 + 58\cdot 67^{2} + 24\cdot 67^{3} + 46\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 + 38\cdot 67 + 40\cdot 67^{2} + 32\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 + 66\cdot 67 + 45\cdot 67^{2} + 44\cdot 67^{3} + 44\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 47 + 4\cdot 67 + 32\cdot 67^{2} + 28\cdot 67^{3} + 19\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 12\cdot 67 + 34\cdot 67^{2} + 21\cdot 67^{3} + 21\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,6)(3,8)(4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,5)(2,6)(3,8)(4,7)$$0$
$2$$4$$(1,8,2,7)(3,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.