Properties

Label 2.7_317.4t3.3
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 317 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2219= 7 \cdot 317 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 48 x^{6} - 130 x^{5} + 511 x^{4} - 810 x^{3} + 1406 x^{2} - 1022 x + 1367 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 32\cdot 43 + 38\cdot 43^{2} + 16\cdot 43^{3} + 33\cdot 43^{4} + 22\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 36\cdot 43 + 23\cdot 43^{2} + 24\cdot 43^{3} + 32\cdot 43^{4} + 19\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 + 28\cdot 43 + 16\cdot 43^{2} + 24\cdot 43^{3} + 14\cdot 43^{4} + 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 + 10\cdot 43 + 36\cdot 43^{2} + 22\cdot 43^{3} + 37\cdot 43^{4} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 31 + 32\cdot 43 + 6\cdot 43^{2} + 20\cdot 43^{3} + 5\cdot 43^{4} + 42\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 37 + 14\cdot 43 + 26\cdot 43^{2} + 18\cdot 43^{3} + 28\cdot 43^{4} + 41\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 40 + 6\cdot 43 + 19\cdot 43^{2} + 18\cdot 43^{3} + 10\cdot 43^{4} + 23\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 41 + 10\cdot 43 + 4\cdot 43^{2} + 26\cdot 43^{3} + 9\cdot 43^{4} + 20\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,2,5)(4,8,6,7)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,3,2,5)(4,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.