Properties

Label 2.7_19e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2527= 7 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} + 10 x^{5} + 31 x^{4} - 122 x^{3} - 211 x^{2} + 155 x + 575 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 116\cdot 137 + 13\cdot 137^{2} + 115\cdot 137^{3} + 95\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 68\cdot 137 + 10\cdot 137^{2} + 132\cdot 137^{3} + 39\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 63\cdot 137 + 53\cdot 137^{2} + 26\cdot 137^{3} + 61\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 37\cdot 137 + 83\cdot 137^{2} + 134\cdot 137^{3} + 86\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 + 126\cdot 137 + 79\cdot 137^{2} + 14\cdot 137^{3} + 31\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 91 + 105\cdot 137 + 126\cdot 137^{2} + 117\cdot 137^{3} + 85\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 113 + 4\cdot 137 + 121\cdot 137^{2} + 6\cdot 137^{3} + 70\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 124 + 26\cdot 137 + 59\cdot 137^{2} + 77\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,7)(3,4,5,8)$
$(1,3)(2,8)(4,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,7)(3,5)(4,8)$$-2$
$2$$2$$(1,3)(2,8)(4,7)(5,6)$$0$
$2$$2$$(1,8)(2,5)(3,7)(4,6)$$0$
$2$$4$$(1,2,6,7)(3,4,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.