Properties

Label 2.7_181.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 7 \cdot 181 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$1267= 7 \cdot 181 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 8 x^{6} + 12 x^{5} - 4 x^{4} + 13 x^{3} + 642 x^{2} - 440 x + 281 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.7_181.3t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 17 a^{2} + 3 a + 13 + \left(10 a^{2} + 6 a\right)\cdot 19 + \left(3 a^{2} + 17 a + 16\right)\cdot 19^{2} + \left(9 a + 15\right)\cdot 19^{3} + \left(6 a^{2} + 11 a + 11\right)\cdot 19^{4} + \left(17 a^{2} + 17 a + 1\right)\cdot 19^{5} + \left(14 a^{2} + 3 a + 18\right)\cdot 19^{6} + \left(6 a^{2} + 2 a + 4\right)\cdot 19^{7} + \left(18 a^{2} + 13 a + 5\right)\cdot 19^{8} + \left(8 a^{2} + 17 a + 4\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 9 + 7\cdot 19 + 15\cdot 19^{2} + 16\cdot 19^{3} + 3\cdot 19^{4} + 13\cdot 19^{5} + 12\cdot 19^{6} + 18\cdot 19^{7} + 9\cdot 19^{8} + 18\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 15 a + 3 + \left(17 a^{2} + 3 a + 5\right)\cdot 19 + \left(8 a^{2} + 11 a + 9\right)\cdot 19^{2} + \left(6 a^{2} + 8\right)\cdot 19^{3} + \left(17 a^{2} + 2 a + 1\right)\cdot 19^{4} + \left(3 a^{2} + 17 a + 5\right)\cdot 19^{5} + \left(10 a^{2} + 2 a + 14\right)\cdot 19^{6} + \left(17 a^{2} + 15 a + 2\right)\cdot 19^{7} + \left(17 a^{2} + a + 18\right)\cdot 19^{8} + \left(4 a^{2} + 2 a + 11\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 7 a + 18 + \left(5 a^{2} + 12 a + 5\right)\cdot 19 + \left(9 a + 5\right)\cdot 19^{2} + \left(18 a^{2} + 5 a + 1\right)\cdot 19^{3} + \left(14 a^{2} + 13 a + 14\right)\cdot 19^{4} + \left(8 a^{2} + 16 a + 11\right)\cdot 19^{5} + \left(9 a^{2} + 18\right)\cdot 19^{6} + \left(11 a^{2} + 16 a + 11\right)\cdot 19^{7} + \left(10 a^{2} + 3 a + 17\right)\cdot 19^{8} + \left(15 a^{2} + 9 a + 14\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 12 + 8\cdot 19 + 8\cdot 19^{2} + 19^{3} + 10\cdot 19^{4} + 3\cdot 19^{5} + 15\cdot 19^{6} + 19^{8} + 6\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 5 a^{2} + 2 a + \left(13 a^{2} + 8 a + 7\right)\cdot 19 + \left(16 a^{2} + 12 a\right)\cdot 19^{2} + \left(16 a^{2} + 11 a + 16\right)\cdot 19^{3} + \left(2 a + 10\right)\cdot 19^{4} + \left(10 a^{2} + 11 a + 7\right)\cdot 19^{5} + \left(3 a + 11\right)\cdot 19^{6} + \left(17 a + 18\right)\cdot 19^{7} + \left(13 a^{2} + 14 a + 9\right)\cdot 19^{8} + \left(15 a^{2} + 8 a + 9\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 16 a^{2} + 14 a + 4 + \left(13 a^{2} + 4 a + 2\right)\cdot 19 + \left(17 a^{2} + 8 a + 3\right)\cdot 19^{2} + \left(a^{2} + 16 a + 14\right)\cdot 19^{3} + \left(12 a^{2} + 4 a + 2\right)\cdot 19^{4} + \left(10 a^{2} + 9 a + 9\right)\cdot 19^{5} + \left(3 a^{2} + 11 a\right)\cdot 19^{6} + \left(12 a^{2} + 18 a + 13\right)\cdot 19^{7} + \left(6 a^{2} + 9 a + 5\right)\cdot 19^{8} + \left(13 a^{2} + 11 a + 3\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + 16 a + 18 + \left(15 a^{2} + 2 a\right)\cdot 19 + \left(9 a^{2} + 17 a + 18\right)\cdot 19^{2} + \left(13 a^{2} + 12 a + 1\right)\cdot 19^{3} + \left(5 a^{2} + 3 a + 2\right)\cdot 19^{4} + \left(6 a^{2} + 4 a + 5\right)\cdot 19^{5} + \left(18 a^{2} + 15 a + 4\right)\cdot 19^{6} + \left(8 a^{2} + 6 a + 5\right)\cdot 19^{7} + \left(9 a^{2} + 13 a + 8\right)\cdot 19^{8} + \left(17 a^{2} + 7 a + 7\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4,7)(3,5,6)$
$(1,6,8,4)(2,3,5,7)$
$(1,3,8,7)(2,4,5,6)$
$(1,8)(2,5)(3,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,7)(4,6)$$-2$
$4$$3$$(1,5,4)(2,6,8)$$\zeta_{3} + 1$
$4$$3$$(1,4,5)(2,8,6)$$-\zeta_{3}$
$6$$4$$(1,6,8,4)(2,3,5,7)$$0$
$4$$6$$(1,6,5,8,4,2)(3,7)$$\zeta_{3}$
$4$$6$$(1,2,4,8,5,6)(3,7)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.