Properties

Label 2.7_157.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 7 \cdot 157 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1099= 7 \cdot 157 $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} + 4 x^{2} + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 13 + 7\cdot 23 + \left(15 a + 9\right)\cdot 23^{2} + \left(12 a + 4\right)\cdot 23^{3} + \left(6 a + 9\right)\cdot 23^{4} + \left(a + 10\right)\cdot 23^{5} + \left(8 a + 11\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 21 + \left(22 a + 3\right)\cdot 23 + \left(7 a + 16\right)\cdot 23^{2} + \left(10 a + 14\right)\cdot 23^{3} + \left(16 a + 9\right)\cdot 23^{4} + \left(21 a + 6\right)\cdot 23^{5} + \left(14 a + 3\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 11 + 11\cdot 23 + 2\cdot 23^{2} + 19\cdot 23^{3} + 18\cdot 23^{4} + 16\cdot 23^{5} + 14\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 10 + \left(22 a + 15\right)\cdot 23 + \left(7 a + 13\right)\cdot 23^{2} + \left(10 a + 18\right)\cdot 23^{3} + \left(16 a + 13\right)\cdot 23^{4} + \left(21 a + 12\right)\cdot 23^{5} + \left(14 a + 11\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 2 + 19\cdot 23 + \left(15 a + 6\right)\cdot 23^{2} + \left(12 a + 8\right)\cdot 23^{3} + \left(6 a + 13\right)\cdot 23^{4} + \left(a + 16\right)\cdot 23^{5} + \left(8 a + 19\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 + 11\cdot 23 + 20\cdot 23^{2} + 3\cdot 23^{3} + 4\cdot 23^{4} + 6\cdot 23^{5} + 8\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.